Inelastic electron Scattering from Hydrogen at 50-Degrees and 60-Degrees

Atwood, W.B. ; Bloom, Elliott D. ; Cottrell, R.Leslie ; et al.
Phys.Lett.B 64 (1976) 479-482, 1976.
Inspire Record 108900 DOI 10.17182/hepdata.18790

Inelastic electron scattering cross sections have been measured for four-momentum transfers between 4.1 GeV 2 and 30.5 GeV 2 . At the large scattering angles of this experiment, the dominant contribution to the cross section comes from the W 1 structure function. In the conventional scaling variables, x and x ′, this structure function does not exhibit scaling behavior, and at fixed x or x ′ it is found to decrease with increasing four-momentum transfer.

1 data table match query

No description provided.


Deep Inelastic Structure Functions From Electron Scattering on Hydrogen, Deuterium, and Iron at 0.6-{GeV}$^2 \le Q^2 \le 30$-{GeV}$^2$

Whitlow, L.W. ;
SLAC-0357, 1990.
Inspire Record 295113 DOI 10.17182/hepdata.2722

None

1 data table match query

No description provided.


INELASTIC ELECTRON - DEUTERON SCATTERING AND THE STRUCTURE OF THE NEUTRON

Bodek, Arie ;
COO-3069-116, 1972.
Inspire Record 74596 DOI 10.17182/hepdata.463

None

1 data table match query

No description provided.


Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

1 data table match query

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5500 GeV.


Proton and deuteron structure functions in muon scattering at 470-GeV

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.D 54 (1996) 3006-3056, 1996.
Inspire Record 416076 DOI 10.17182/hepdata.42347

The proton and deuteron structure functions F2p and F2d are measured in inelastic muon scattering with an average beam energy of 470 GeV. The data were taken at Fermilab experiment E665 during 1991 and 1992 using liquid hydrogen and deuterium targets. The F2 measurements are reported in the range 0.0008<x<0.6 and 0.2<Q2<75 GeV2. These are the first precise measurements of F2 in the low x and Q2 range of the data. In the high x range of the data where they overlap in x and Q2 with the measurements from NMC, the two measurements are in agreement. The E665 data also overlap in x with the DESY HERA data, and there is a smooth connection in Q2 between the two data sets. At high Q2 the E665 measurements are consistent with QCD-evolved leading twist structure function models. The data are qualitatively described by structure function models incorporating the hadronic nature of the photon at low Q2. The Q2 and the W dependence of the data measure the transition in the nature of the photon between a pointlike probe at high Q2 and a hadronic object at low Q2.

1 data table match query

No description provided.


Scaled energy (z) distributions of charged hadrons observed in deep inelastic muon scattering at 490-GeV from xenon and deuterium targets

The E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Rev.D 50 (1994) 1836-1873, 1994.
Inspire Record 361348 DOI 10.17182/hepdata.42540

Fermilab Experiment-665 measured deep-inelastic scattering of 490 GeV muons off deuterium and xenon targets. Events were selected with a range of energy exchange ν from 100 GeV to 500 GeV and with large ranges of Q2 and xBj: 0.1 GeV2/c2<Q2<150 GeV2/c2 and 0.001<xBj<0.5. The fractional energy (z) distributions of forward-produced hadrons from the two targets have been compared as a function of the kinematics of the scattering; specifically, the kinematic region of ‘‘shadowing’’ has been compared to that of nonshadowing. The dependence of the distributions upon the order of the hadrons, determined by the fractional energies, has been examined as well; a strong degree of similarity has been observed in the shapes of the distributions of the different order hadrons. These z distributions, however, show no nuclear dependence, even in the kinematic region of shadowing.

1 data table match query

No description provided.


Measurement of the 6Li(e,e'p) reaction cross sections at low momentum transfer

Hotta, T. ; Tamae, T. ; Miura, T. ; et al.
Nucl.Phys.A 645 (1999) 492-508, 1999.
Inspire Record 478503 DOI 10.17182/hepdata.36176

The triple differential cross sections for the 6Li(e,e'p) reaction have been measured in the excitation energy region from 27 to 46 MeV in a search for evidence of the giant dipole resonance (GDR) in 6Li. The cross sections have no distinct structures in this energy region, and decrease smoothly with the energy transfer. Angular distributions are different from those expected with the GDR. Protons are emitted strongly in the momentum-transfer direction. The data are well reproduced by a DWIA calculation assuming a direct proton knockout process.

1 data table match query

No description provided.


Inclusive single-particle distributions and transverse momenta of forward produced charged hadrons in mu p scattering at 470-GeV

The E665 collaboration Adams, M.R. ; Aderholz, M. ; Aid, S. ; et al.
Z.Phys.C 76 (1997) 441-463, 1997.
Inspire Record 450187 DOI 10.17182/hepdata.37889

Using data from the Fermilab fixed target experiment E665, general properties of forward produced charged hadrons in μp interactions at a primary muon energy of 470 GeV are investigated. The normalized inclusive singleparticle distributions for Feynman-x D(xF ) and for the transverse momentum D(p2t , xF ) are measured as a function of W and Q2. The dependence of the average transverse momentum squared 〈p2t〉 on xF , W and Q2 is studied. The increasing contribution from diffractive production as Q2 decreases leads to a reduction of the average charged hadron multiplicities at low (positive) xF and an enhancement at large xF , for Q2 ≲ 10 GeV2. It also reduces 〈p2t〉 for Q2 ≲ 5 GeV2 and 0.4 ≲ xF < 1.0.

1 data table match query

Normalised inclusive single-particle distributions of charged hadrons as a function of XL and PT**2 in different intervals of Q**2. Additional systematic error 4 PCT.


Proton and deuteron f2 structure functions in deep inelastic muon scattering

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Lett.B 295 (1992) 159-168, 1992.
Inspire Record 338074 DOI 10.17182/hepdata.29003

The structure functions F p 2 and F d 2 measured by deep inelastic muon scattering at incident energies of 90 and 280 GeV are presented. These measurements cover a large kinematic range, 0.006⩽ x ⩽0.6 and 0.5⩽ Q 2 ⩽55GeV 2 , and include the first precise data at small x , where large scaling violations are observed. The data agree with earlier results from SLAC and BCDMS but exhibit differences with respect to those of EMC-NA2. Extrapolations to small x of recent phenomenological parton distributions are shown to disagree with the present results.

1 data table match query

No description provided.


Measurement of the Proton Structure Function F(2) in Muon - Hydrogen Interactions at 120-GeV and 280-GeV

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 105 (1981) 315-321, 1981.
Inspire Record 167336 DOI 10.17182/hepdata.31046

The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.

1 data table match query

No description provided.