The differential asymmetry ratio for the process γ+n→p+π− was measured at 90° in the center-of-mass system and for incident photon energies from 352 to 550 MeV. The observed asymmetries are larger than the values predicted from the theory by Berends, Donnachie, and Weaver. A smaller M1- amplitude gives better agreement between the experiment and the theory.
No description provided.
No description provided.
None
No description provided.
The reaction gamma p --> K0 Sigma+ was measured in the photon energy range from threshold up to 2.6 GeV with the SAPHIR detector at the electron stretcher facility, ELSA, in Bonn. Results are presented on the reaction cross section and the polarization of the Sigma+ as a function of the kaon production angle in the centre-of-mass system, cos(Theta_K^{c.m.}), and the photon energy. The cross section is lower and varies less with photon energy and kaon production angle than that of gamma p --> K+ Sigma0. The Sigma+ is polarized predominantly at cos(Theta_K^{c.m.}) \approx 0. The data presented here are more precise than previous ones obtained with SAPHIR and extend the photon energy range to higher values. They are compared to isobar model calculations.
Polarization parameter of the SIGMA+ as a function of angle in two photon energy ranges.
The polarized target asymmetry in the reaction γ p → π 0 p has been measured at c.m. angles of 30°, 80°, 105° and 120° for incident photon energies below 1 GeV. Two decay photons from π 0 were detected in coincidence at 30°, and at the other angles recoil protons and single photons from π 0 were detected. The results are compared with recent phenomenological analyses.
No description provided.
The polarized target asymmetry for the process γ p → π + n has been measured for incident photon energies below 1.02 GeV over a range of c.m. angles from 40° to 160°. π + mesons from a polarized butanol target were detected by a magnetic spectrometer. The results are compared with predictions given by existing analyses. A tentative interpretation of the data is performed, and a larger contribution of S-wave resonances is suggested. The photocouplings of dominant resonances were hardly changed by the inclusion of new data and they seem to be almost uniquely determined.
No description provided.
The recoil proton polarization of the reaction γ p → π 0 p was measured at a c.m. angle of 100° for incident photon energies between 451 and 1106 MeV, and at an angle of 130° for energies from 400 to 1142 MeV. One photon, decayed from a π 0 meson, and a recoil proton were detected in coincidence. Two kinds of polarization analyzer were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization, respectively. The data given by the two polarimeter systems are in good agreement. Results are compared with recent phenomenological analyses. From the comparison between the present data and the polarized target data, the invariant amplitude A 3 can be estimated to be small.
RESULT WITH THE CARBON POLARIMETER.
RESULT WITH THE CARBON POLARIMETER.
Measurement of secondary-proton polarization from the reaction γ p → π 0 p have been performed in the proton energy range 500–800 MeV at c.m. pion emission angles 100°, 120°, 140°. The experiment was carried out using an optical spark chamber telescope at the output of the magnetic spectrometer. The obtained experimental data are included in a Walker-type analysis in order to verify the parameters of the resonances P 11 (1470), D 13 (1570) and S 11 (1535). Proton polarization in the reaction γ p → π 0 p was measured for a photon energy of 450 MeV at a c.m. pion emission angle of 105° using photons linearly polarized at 45° to the reaction plane. A liquid hydrogen target in the field of a superconducting magnet was used for the separation of the P x ′ and P z ′ components of the secondary-proton polarization vector.
No description provided.
The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.
No description provided.
At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.