Date

Version 2
Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Eur.Phys.J.C 80 (2020) 167, 2020.
Inspire Record 1748157 DOI 10.17182/hepdata.93535

The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($\ |y\ | < 0.5$) are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $\rm{K}^{0}_{S}$, $\Lambda$, $\Xi$, and $\Omega$ increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

121 data tables

$K^{0}_{S}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

$K^{0}_{S}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

$\Lambda+\bar{\Lambda}$ transverse momentum spectrum - V0M multiplicity classes. Total systematic uncertainties include both correlated and uncorrelated uncertainties across multiplicity. Uncorrelated systematic originating from the multiplicity dependence of the efficiency (2%) is not included.

More…

Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 117, 2018.
Inspire Record 1674077 DOI 10.17182/hepdata.85698

A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\overline{t}}$ background. The measured cross section of 63.1 $\pm$ 1.8 (stat) $\pm$ 6.4 (syst) $\pm$ 2.1 (lumi) pb is in agreement with the standard model expectation.

2 data tables

The measured total cross sections based on the $\rm{e}^\pm \mu^\mp$ decay channel. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

Summary of the individual contributions to the uncertainty in the $\sigma_{tW}$ measurement.


Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in pp collisions at sqrt(s)=13 TeV

The CMS collaboration
CMS-PAS-TOP-17-011, 2018.
Inspire Record 1680899 DOI 10.17182/hepdata.85704

The cross sections for the production of single top quarks and antiquarks in the $t$ channel, and their ratio, are measured in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$. The full data set recorded in 2016 by the CMS detector at the LHC is analyzed, corresponding to an integrated luminosity of $35.9~\mathrm{fb}^{-1}$. Events with one muon or electron and two jets are selected, where one of the two jets is identified as originating from a bottom quark. A multivariate discriminator exploiting several kinematic variables is applied to separate signal from background events. The ratio $R_{t\mathrm{\text{-}ch.}}$ of the cross sections is measured to be $1.65 \pm0.02\,\text{(stat)} \pm0.04\,\text{(syst)}$. The total cross section for the production of single top quarks or antiquarks is measured to be $219.0 \pm1.5\,\text{(stat)} \pm33.0\,\text{(syst)} \,\mathrm{pb}$ and the absolute value of the CKM matrix element $V_{\mathrm{tb}}$ is determined to be $1.00 \pm0.05\,\text{(exp)} \pm0.02 \,\text{(theo)}$. All results are in agreement with the standard model predictions.

7 data tables

The measured cross section of top quark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured cross section of top antiquark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured inclusive cross section of production of the top quarks and antiquarks in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

More…

Measurement of the inclusive $\mathrm{t}\overline{\mathrm{t}}$ cross section in pp collisions at $\sqrt{s} =$ 5.02 TeV using final states with at least one charged lepton

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2018) 115, 2018.
Inspire Record 1635271 DOI 10.17182/hepdata.81690

The top quark pair production cross section ($\sigma_{\mathrm{t}\overline{\mathrm{t}}}$) is measured for the first time in pp collisions at a center-of-mass energy of 5.02 TeV. The data were collected by the CMS experiment at the LHC and correspond to an integrated luminosity of 27.4 pb$^{-1}$. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is $ \sigma_{\mathrm{t}\overline{\mathrm{t}}} = 69.5 \pm 6.1$ (stat) $\pm 5.6$ (syst) $\pm 1.6$ (lumi) pb, with a total relative uncertainty of 12%. The result is in agreement with the expectation from the standard model. The impact of the presented measurement on the determination of the gluon distribution function is investigated.

15 data tables

The measured fiducial cross sections in the $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross sections based on the $\ell$+jets (left), $\rm{e}^\pm \mu^\mp$ (middle) and $\mu^\pm \mu^\mp$ (right) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross section in the combined $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The weights of the individual measurements are 81.8% for $\ell$+jets, 13.5% for $\rm{e}^\pm \mu^\mp$, and 4.7% for $\mu^\pm \mu^\mp$ channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

More…