Polarization of Recoil Protons from the Photoproduction of pi0 Mesons from Hydrogen

Stein, P.C. ;
Phys.Rev.Lett. 2 (1959) 473-475, 1959.
Inspire Record 944911 DOI 10.17182/hepdata.21754

None

1 data table

No description provided.


Photoproduction of Neutral Pions at Energies 600 to 800 Mev

Worlock, R.M. ;
Phys.Rev. 117 (1960) 537-543, 1960.
Inspire Record 944990 DOI 10.17182/hepdata.26862

The photoproduction of neutral π mesons from hydrogen has been studied at the California Institute of Technology Synchrotron Laboratory by detecting recoil protons from a liquid hydrogen target irradiated by the synchrotron bremsstrahlung beam. The recoil protons were detected by a five-counter telescope. Data were taken at proton laboratory angles of 19°, 30°, 40°, 50°, and 60° at proton energies corresponding to photon energies of 600, 700, and 800 Mev. Angular distribution data are produced at these three energies and fitted with functions of the form: A+Bcosθπ′+Ccos2θπ′. These functions are qualitatively like those at lower energies; B is small and −AC is roughly 1.25. The total cross section is found to have a minimum at about 600 Mev, being slightly larger at 700 and 800 Mev.

3 data tables

No description provided.

No description provided.

No description provided.


Photoproduction of Neutral Pions at Forward Angles

Berkelman, Karl ; Waggoner, James A. ;
Phys.Rev. 117 (1960) 1364-1375, 1960.
Inspire Record 46817 DOI 10.17182/hepdata.26899

The bremsstrahlung beam of the Cornell Bev electron synchrotron has been used to study the reaction γ+p→π0+p over the photon energy range 250 Mev to 1 Bev, and for center-of-mass pion angles between 20° and 70°. The recoil protons, of energies between 10 and 60 Mev, were identified and their energies determined using a range telescope of eight thin plastic scintillators enclosed in a vacuum chamber with the thin liquid hydrogen target. Correlated pulse-height information was obtained by photographing an oscilloscope display and was used to sort out the protons from mesons and electrons. Corrections were made for the background of photoprotons from the Mylar target cup, the energy loss of the protons in the liquid hydrogen, absorption and scattering in the counter telescope, and the variation of beam intensity profile with energy. Compared with previous experiments and extrapolations the results show a somewhat smaller forward differential cross section above 400 Mev. The angular distributions obtained from a least-squares fit to all existing data indicate a d32 assignment for the 760-Mev resonance level. Other implications of the data are also discussed.

1 data table

No description provided.


Photoproduction of pi0 Mesons from Hydrogen in the Region 900 to 1200 Mev

Jackson, H.E. ; DeWire, J.W. ; Littauer, R.M. ;
Phys.Rev. 119 (1960) 1381-1384, 1960.
Inspire Record 944989 DOI 10.17182/hepdata.26849

The reaction γ+p→π0+p has been studied in three adjacent 100-Mev energy intervals between 900 and 1200 Mev and at pion center-of-mass angles of 47°, 90°, and 125°. The reaction was observed as a coincidence between the recoil proton and one of the photons from the meson's decay. The kinematics were determined by the energy of the incident photon and the angle of the recoil proton. The differential cross sections at the forward and backward angles show pronounced maxima near 1050 Mev, while the 90° cross sections decrease slowly with energy. The estimated total cross sections suggest a narrow maximum near 1050 Mev. These features are consistent with the previously proposed existence of a resonant state in the pion-nucleon system of total angular momentum 52.

1 data table

No description provided.


The ratio of π° photoproductions from neutrons and protons in deuterium in the energy range of 700 to 1100 mev.

Chang, Tseng-Hsu ; Walker, Robert Lee ;
CIT-12, 1962.
Inspire Record 44258 DOI 10.17182/hepdata.37218

The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.

2 data tables

No description provided.

No description provided.


Polarization of the Recoil Proton from the Neutral Photoproduction at 800 and 910 Mev

Mencuccini, C. ; Querzoli, R. ; Salvini, G. ;
Phys.Rev. 126 (1962) 1181-1182, 1962.
Inspire Record 944983 DOI 10.17182/hepdata.26790

The measurements on the polarization of the recoil protons from the process γ+p→π0+p have been extended to higher γ-ray energies, at 90° in the center-of-mass system. We have found at 910 Mev a polarization, P=−0.45±0.07; at 800 Mev, P=−0.42±0.10. The rather high values of P agree with the hypothesis that the neutral photoproduction in the 500-1000 Mev range can be described by the well-known three resonant states, and strongly indicate that the second and third resonance have opposite parity. The probable quantum numbers are: T=12, J=32, D pion wave for the second resonance; T=12, J=52, F wave for the third resonance.

1 data table

No description provided.


Evidence for Vector-Meson Effects on pi0 Photoproduction From Hydrogen

Talman, R.M. ; Clinesmith, C.R. ; Gomez, R. ; et al.
Phys.Rev.Lett. 9 (1962) 177-180, 1962.
Inspire Record 944904 DOI 10.17182/hepdata.19353

None

3 data tables

No description provided.

No description provided.

No description provided.


Photoproduction of $\pi^\circ$'S from protons in the forward direction in the region of the second and third resonances

Talman, Richard Michael ; Tollestrup, Alvin V. ;
CIT-8, 1963.
Inspire Record 44255 DOI 10.17182/hepdata.37170

NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. The cross section for photoproduction of neutral pions from protons has been measured at energies near 750, 915 and 1150 Mev and over most of the forward-going [...] C.M. hemisphere. The experimental technique consisted of detecting both of the [...] decay photons with lead glass total absorption counters and, when convenient, the recoil proton with a single scintillation counter. The method is subject to rather large systematic errors but, within these, our results are consistent with other experiments wherever there are overlapping points. Our data has the striking feature that the cross section is very small at [...] in the region of the second and third pion nucleon resonances. Also, although the data is not inconsistent with a simple first, second and third resonance model, it appears likely that above the third resonance the pole process consisting of the exchange of a single vector meson is becoming important or even dominant. The evidence at this time mildly suggests that this behaviour is largely due to [...] mesons and under that hypothesis we are able to estimate some [...] meson coupling constants. For example, using a prescription of Gell-Mann and Zachariasen, we estimate the partial width for the decay [...] to be 240 Kev.

1 data table

No description provided.


Polarization of the Proton from the gamma+n --> p+pi- Reaction

Kenemuth, J.R. ; Stein, P.C. ;
Phys.Rev. 129 (1963) 2259-2264, 1963.
Inspire Record 944978 DOI 10.17182/hepdata.26789

The polarization of the proton from the γ+n→p+π− reaction in deuterium has been experimentally measured at 90° in the center-of-mass system for photon energies near 715 MeV by using a counter technique to observe the left to right asymmetry in the scattering of the protons from carbon. A value of -0.26±0.06 was observed, with the direction of the polarization defined by n^=(k^×q^)|k^×q^|, where k^ and q^ are, respectively, unit vectors in the directions of the photon momentum and the pion momentum. The result is interpreted as an indication that the interference between the P32 (325 MeV) and D32 (750 MeV) resonances may not be the dominant contribution to the polarization at this energy. Significant contributions from either an interference between the P32 (325 MeV) resonance and the possible new resonance suggested by the π, p scattering measurements, or an interference between the D32 (750 MeV) and F52 (1050 MeV) resonances, or a combination of these two possibilities seem to be required.

2 data tables

No description provided.

No description provided.


Photoproduction of Single Neutral Pions from Hydrogen at Energies 0.6 to 1.2 BeV

Diebold, R. ;
Phys.Rev. 130 (1963) 2089-2097, 1963.
Inspire Record 944976 DOI 10.17182/hepdata.26774

Measurements of the differential cross section for the process γ+p→π0+p have been made at three pion center-of-mass angles: 60°, 90°, and 120°. Values were obtained at intervals of 0.05 BeV (incident laboratory photon energy, k) from approximately 0.6 to 1.2 BeV. Most of the data were obtained by detecting only the recoil protons with a large, wedge-shaped, single-focusing magnetic spectrometer and associated equipment. For θ′π0=60° and k≤0.94 BeV the π0 decays were also required, the decay photons being detected by a lead glass total absorption counter. Although the experimental resolution was considerably narrower than that of most of the previous experiments, its averaging effect was still appreciable in certain regions. Using a six-parameter fit, the data at each angle were unfolded in an effort to eliminate the effects of resolution and to obtain the true cross sections as a function of energy. The results compare reasonably well with those of previous experiments once differences in resolutions and systematic errors are taken into account. The results did not agree with the predictions of a simple resonance model with the resonance quantum numbers suggested by Peierls. The positions and widths of the two cross-section peaks in this energy region are quite similar to those observed in π−p scattering.

1 data table

No description provided.