Date

Polarization of recoil protons from neutral pion photoproduction

Hayakawa, Satio ; Horikawa, Naoaki ; Kajikawa, Ryoichi ; et al.
J.Phys.Soc.Jap. 25 (1968) 307-318, 1968.
Inspire Record 1393542 DOI 10.17182/hepdata.38539

None

1 data table

No description provided.


Proton-antiproton elastic scattering at 2.7 GeV/c

Domingo, Vincent ; Fisher, George P. ; Sears, Robert ;
Bull.Am.Phys.Soc. 12 (1967) 470, 1967.
Inspire Record 1393550 DOI 10.17182/hepdata.50400

None

1 data table

No description provided.


Search for direct scalar top pair production in final states with two tau leptons in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 81, 2016.
Inspire Record 1393662 DOI 10.17182/hepdata.69768

A search for direct pair production of the supersymmetric partner of the top quark, decaying via a scalar tau to a nearly massless gravitino, has been performed using 20 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV. The data were collected by the ATLAS experiment at the LHC in 2012. Top squark candidates are searched for in events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at 95% confidence level are set as a function of the top squark and scalar tau masses. Depending on the scalar tau mass, ranging from the 87 GeV LEP limit to the top squark mass, lower limits between 490 GeV and 650 GeV are placed on the top squark mass within the model considered.

11 data tables

Distribution of $m_{\rm T}^{\rm sum}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(b \ell, b \tau_{\mathrm{had}})$ for events passing all the lepton-hadron LM signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

More…

On the measurement of $\pi^{+}$ meson photoproduction from hydrogen near threshold

Lewis, G.M. ; Azuma, R.E. ;
Proc.Phys.Soc. 73 (1959) 873-880, 1959.
Inspire Record 1393355 DOI 10.17182/hepdata.26968

None

1 data table

No description provided.


The photoproduction of $\pi^{0}$ mesons in hydrogen

Miller, D.B. ; Bellamy, E.H. ;
Proc.Phys.Soc. 81 (1963) 343-348, 1963.
Inspire Record 1393356 DOI 10.17182/hepdata.26953

None

1 data table

No description provided.


Measurement of parity non-conserving optical rotation in the 648 nm transition in atomic bismuth

Taylor, J.D. ; Baird, P.E.G. ; Hunt, R.G. ; et al.
J.Phys.B 20 (1987) 5423-5442, 1987.
Inspire Record 1393361 DOI 10.17182/hepdata.38568

Parity non-conserving (PNC) optical rotation has been measured by laser polarimetry in the 648 nm magnetic dipole transition (6p$^{3}J$=$\frac{3}{2}\rightarrow$6p$^{3}J'=\frac{5}{2}$) in atomic bismuth. The experiment involves finding the small differences in rotation between selected frequency points in the vicinity of the F = 6 $\rightarrow$ F' = 7 hyperfine component. Faraday rotation, which can be distinguished from PNC rotation by its wavelength dependence, is used in locking the laser frequency and calibrating the PNC' effect. Results obtained over a six-year period are summarised; a detailed discussion of error sources and associated tests is given. The final result for the PNC parameter of the 648 nm transition is R = (-9.3 $\pm$ 1.4)X10$^{-8}$. This is in agreement with the measurements of Birich et a/ but not with those of Barkov and Zolotorev. It is also consistent with the standard model of the electroweak interaction, but the uncertainty in the atomic theory is now the limiting factor in the comparison.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


A measurement of the longitudinal and transverse parts of the $\pi^{+}$ electroproduction cross-section at 1175 MeV pion-nucleon centre-of-mass energy.

Bardin, G. ; Duclos, J. ; Julien, J. ; et al.
Lett.Nuovo Cim. 13 (1975) 485-488, 1975.
Inspire Record 1393354 DOI 10.17182/hepdata.37444

None

1 data table

DEDUCED FROM MEASUREMENTS AT EPSILON OF 0.20 AND 0.65.


Total cross-section measurement of $\pi^{-}$ photoproduction on deuteron in the first-resonance region.

Chiefari, G. ; Drago, E. ; Napolitano, M. ; et al.
Lett.Nuovo Cim. 13 (1975) 129-133, 1975.
Inspire Record 1393351 DOI 10.17182/hepdata.37447

None

2 data tables

No description provided.

CROSS SECTION ON NEUTRON CALCULATED FROM DEUTERIUM MEASUREMENTS USING THE NUCLEON SPECTATOR MODEL.


Some results on the $\rho$ (1.71) resonance produced in 9.1 GeV/c $\pi^{-}$-p collisions.

Armenise, N. ; Fogli Muciaccia, M.T. ; Piccarelli, V. ; et al.
Lett.Nuovo Cim. 4 (1972) 205-209, 1972.
Inspire Record 1393350 DOI 10.17182/hepdata.37349

None

1 data table

No description provided.


Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

4 data tables

Bottom and charm hadron invariant yields as a function of $p_{T}$.

Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.

Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.

More…