None
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 10./10. contribution (DUE TO BEAM POLARIZATION UNCERTAINTY).
D(SIG)/D(OMEGA)=(D(SIG(O))/D(OMEGA)+D(SIG(C))/D(OMEGA))/2, WHERE (O) AND (C) DENOTES GAMMA POLARIZATION ORTHOGONAL AND COPLANAR TO THE REACTION PLANE.
Axis error includes +- 10./10. contribution (DUE TO BEAM POLARIZATION UNCERTAINTY).
None
Axis error includes +- 10/10 contribution (DUE TO BEAM POLARIZATION UNCERTAINTY).
Axis error includes +- 10/10 contribution (DUE TO BEAM POLARIZATION UNCERTAINTY).
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
We present data on\(\bar pn\) and π− n collisions obtained from an exposure of the 30′' FNAL deuterium filled bubble chamber to a mixed\({{\bar p} \mathord{\left/ {\vphantom {{\bar p} {\pi ^ -}}} \right. \kern-\nulldelimiterspace} {\pi ^ -}}\) beam with a momentum of 100 GeV/c. We find that in 17±2% of the collisions with the antiproton there is an interaction on the spectator while for the collisions with π− mesons the corresponding number is 15±2%. The\(\bar pn\) and π− n multiplicity distributions have average charged multiplicities of 6.46±0.07 and 6.53±0.08 respectively. The average multiplicities for both types of interactions are slightly smaller than those for the corresponding reactions on hydrogen by an amount that is the same as observed at other energies. As an estimate of\(\bar pn\) annihilation we have calculated the difference\(\sigma _n (\bar pn) - \sigma _n (pn)\) for each prong numbern. We find an average multiplicity of 9±1, a value close to that for\(\bar pp\) annihilation at the same energy. combining our data with lower energy\(\bar pn\) annihilation data, we observe that the average negative multiplicity is systematically larger than that for\(\bar pp\) annihilation similar to the difference between neutron and proton target data with other beam projectiles.
No description provided.
Differential cross sections and polarization analyzing powers for proton-deuteron elastic scattering have been measured at 800 MeV incident proton kinetic energy over the range of center-of-mass angles from 14.1° to 153.6°. The differential cross sections are described by the Glauber theory of impulse approximation at forward angles (−t<0.5) and exhibit the exponential dependence on cosθc.m. typical for these energies at backward angles (cosθc.m.<−0.5). The analyzing power shows considerable structure with strong positive peaks at forward and backward angles and a sharp dip at t=−0.4 typical at intermediate energies. There is no evidence for correspondence of the angular dependence of the analyzing power with that for the pp→dπ+ reaction. At large momentum transfer the data favor calculations based on multiple scattering with a modified deuteron form factor rather than N* exchange. NUCLEAR REACTIONS H2(p,p)H2, E=800 MeV, measured σ(θ) and Ay(θ).
No description provided.
We have performed a search for narrow resonances in the center of mass energy range from 29.90 to 31.46 GeV using the e + e − storage ring PETRA at DESY. We present the total cross section for hadron production and an upper limit for resonance production, indicating that no bound state of charge- 2 3 quarks exists in this energy range.
AVERAGE VALUE OF R OVER THE SCAN REGION.
THESE MEASUREMENTS COMBINED WITH PREVIOUS DATA AT 30.0 AND 31.6 GEV REPORTED IN CH. BERGER ET AL., PL 86B, 413 (1979).
We present the B( d θ d y ) y=0 for J /ψ over thefull range of ISR energies and for ϒ at √ s = 53 and 63 GeV, using their dielectron decay mode. The average transverse momentum and the decay angles are presented. We found ( p T ) = 1.75 ± 0.19 GeV for ϒ, being higher than ( p T ) of the continuum and rising with √s. We present a comparison of the cross sections of J/ψ and ϒ with those of the continuum, at the same masses, as a function of √s. An appropriate scaling of the hadronic production of quark-antiquark narrow bound states involving ⋉, J/ψ, ψ′, ϒ, and ϒ′ is presented as a function of m /√ s at y = 0, and is compared with Drell-Yan scaling.
No description provided.
UPSILON HERE = UPSILON+UPSILON PRIME.