Results are presented of an investigation of the polarization of recoil protons appearing in elastic 1r+ -p scattering through an angle of 140 ± 8° in the c.m.s. at an energy of 307 ± 5 Mev. A polarization value P 1 = -0.19 ± 0.17 has been deriver from the data on the magnitude of the left-right asymmetry in elastic scattering of recoil protons on photographic emulsion nuclei. Phase shifts satisfying the indicated polarization value and consistent with the differential cross section for elastic scattering of 71"+ -mesons by protons are given by Eq. (1). Problems connected with the use of various phase shift sets for analysis of the experimental data are discussed.
No description provided.
We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.
.
.
.
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.
No description provided.
The polarization of the recoil proton has been measured in both high-energy elastic and inclusive proton-proton scattering at the internal-target area of Fermi National Accelerator Laboratory. The polarization in elastic scattering was measured at a number of center-of-mass energies up to s=19.7 GeV. Indications of negative polarization were seen at the higher center-of-mass energies for t values of -0.6, -0.8, and -1.0 (GeV/c)2. In the inclusive process p+p→p↑+X the polarization was found to be independent of beam energy from 100 to 400 GeV for xF values of -0.7, -0.8, -0.9. The polarization at PT=1.0 GeV/c, xF=−0.7 and xF=−0.8 was less than 2.5%. This is significantly lower than the corresponding measurements reported for Λ0 inclusive polarization.
No description provided.
No description provided.
No description provided.
The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.
No description provided.
The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.
No description provided.
Data from hydrocarbon target.
Data from hydrocarbon target.
Results of systematic measurements of the asymmetry parameter in the elastic scattering of pions on polarized protons at 1.4–2.1 GeV/ c in the backward hemisphere are presented together with a test of the isospin invariance of the data set available on pion-proton scattering in the investigated momentum range. The transversity isodoublet amplitudes at 1.98 and 2.07 GeV/ c are reconstructed. The obtained data, the isospin analysis and amplitude reconstruction results are compared with the current phase-shift analysis predictions.
No description provided.
The differential cross section for K ± p elastic scattering has been measured in the very low t region (0.003 < t < 0.2 GeV 2 ) in a wire chamber spectrometer experiment at 10.4 and 14 GeV/ c . The interference effect observed between the Coulomb and the nuclear interaction has been used to determine α, the ratio of real to imaginary part of the forward scattering amplitude. At 10.4 GeV/ c we measure α (K + p) = −0.21 ± 0.06 and α (K − p = 0.08 ± 0.04, and at 14 GeV/ c , α (K + p) = − 0.13 ± 0.03 and α (K − p) = 0.000 ± 0.04 in agreeement with the predictions of dispersion theory calculation.
No description provided.
The polarization of the recoil proton at this energy depends on the interference of the P 33 phase shift with the P 11 and S 11 phase shifts. The measured values indicate the existence of a large P 11 phase shift. The polarization was measured by scattering from carbon blocks in spark chambers using a Vidicon scanner to record the data.
No description provided.