Date

Higher twist effects in the reaction pi- N ---> mu+ mu- X at 253-GeV/c

Heinrich, J.G. ; Biino, C. ; Greenhalgh, J.F. ; et al.
Phys.Rev.D 44 (1991) 1909-1932, 1991.
Inspire Record 324652 DOI 10.17182/hepdata.22829

The distributions of quarks in the pion and nucleon are extracted from measurements of the reaction π−N→μ+μ−X at 253 GeV/c in a naive Drell-Yan analysis, as well as QCD-corrected analyses at leading-log and next-to-leading-log order. As xπ→1 the pion structure function shows a term that varies as 1mμμ4, which we interpret as a higher-twist effect. Additionally, the angular distribution of the μ+ in the muon-pair rest frame tends towards sin2θ as xπ→1 and as mμμ→0 in a manner consistent with higher-twist effects. When the strongly mass-dependent higher-twist effects are included as part of the pion structure function, the nucleon structure function agrees well with leading-twist results from deeply inelastic lepton-hadron scattering. A significant advance of the present work is the extension of the analysis to low masses by the subtraction of the Jψ and ψ′ resonances from the continuum. Our analysis covers the kinematic range 0.4<xπ<1.0 and 0.02<xN<0.33 with 3.0<mμμ<8.55 GeV/c2. Cross sections for ψ′ production are presented in an appendix.

3 data tables

No description provided.

No description provided.

No description provided.


Deuteron production in alpha nucleus collisions from 200-MeV to 800-MeV per nucleon

Montarou, G. ; Alard, J.P. ; Augerat, J. ; et al.
Phys.Rev.C 44 (1991) 365-383, 1991.
Inspire Record 28947 DOI 10.17182/hepdata.26158

Deuteron spectra at laboratory angles from 30° to 90° were measured in α+(Pb, Cu, and C) collisions at 800, 600, and 200 MeV/nucleon, and α+(Pb and C) collisions at 400 MeV/nucleon. The coalescence relation between protons and deuterons was examined for the inclusive part of the spectra. The size of the interacting region was evaluated from the observed coalescence coefficients. The rms radius is typically 4–5 fm, depending of the target mass. The proton and deuteron energy spectra corresponding to central collisions were fitted assuming emission from a single source moving with a velocity intermediate between that of the projectile and the target. The extracted ‘‘temperatures’’ are independent of the nature of the emitted particle, indicating that the fragments have a common source. The best fits were achieved for 200- and 400-MeV/nucleon reactions. Spectra of deuteron-like pairs, including real deuterons and neutron-proton pairs that may be contained in a larger nuclear cluster, are compared to the prediction of an intranuclear cascade model incorporating a clustering algorithm based on a classical coalescence prescription. Best agreements between experimental and predicted deuteron-like spectra occur for 800- and 600-MeV/nucleon collisions.

3 data tables

No description provided.

No description provided.

No description provided.


Inclusive jet cross-section and a search for quark compositeness at the CERN $\bar{p} p$ collider

The UA2 collaboration Alitti, J. ; Ansari, R. ; Autiero, D. ; et al.
Phys.Lett.B 257 (1991) 232-240, 1991.
Inspire Record 302588 DOI 10.17182/hepdata.29493

The inclusive jet cross-section has been measured at the CERN p p Collider ( s = 630 GeV ) as a function of the jet transverse momentum ( p T ) and pseudorapidity ( η ) for p T values up to 180 GeV and for−2< η <2. The results are consistent with leading order QCD calculations, and a lower limit Λ c >825 GeV (95% CL ) is set on the quark compositeness scale Λ c .

2 data tables

No description provided.

No description provided.


Dimuon production in proton - copper collisions at s**(1/2) = 38.8-GeV

Moreno, G. ; Brown, C.N. ; Cooper, W.E. ; et al.
Phys.Rev.D 43 (1991) 2815-2836, 1991.
Inspire Record 302822 DOI 10.17182/hepdata.22831

Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass ϒ S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.

26 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of massive electron pairs and associated particles produced at the CERN ISR

The CERN-Michigan State-Oxford-Rockefeller collaboration Angelis, A.L.S. ; Basini, G. ; Besch, H.J. ; et al.
Nucl.Phys.B 348 (1991) 1-22, 1991.
Inspire Record 298427 DOI 10.17182/hepdata.33054

A sample of 105 e + e − events with an invariant mass greater than 11 GeV/ c 2 produced in pp collisions at a center-of-mass energy of 62.3 GeV is discussed. Cross sections are presented as a function of mass and transverse momentum. The multiplicity, transverse momentum, and azimuthal dependence of associated particles are also studied.

3 data tables

No description provided.

No description provided.

No description provided.


A Study of coherence of soft gluons in hadron jets

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 617-628, 1990.
Inspire Record 297564 DOI 10.17182/hepdata.49561

We study the inclusive momentum distribution of charged particles in multihadronic events produced in e + e − annihilations at E CM ∼ M (Z 0 ). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.

1 data table

Statistical errors only. Overall systematic error of 5%.


Inclusive production of K*0(892) mesons in K+ A interactions at 11.2-GeV.

Akimenko, S.A. ; Belousov, V.I. ; Kolosov, V.N. ; et al.
Sov.J.Nucl.Phys. 52 (1990) 884-889, 1990.
Inspire Record 296925 DOI 10.17182/hepdata.40693

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive C-12 (e, p) cross-sections

Lourie, R.W. ; Weinstein, L.B. ;
Phys.Rev.C 42 (1990) 441-443, 1990.
Inspire Record 303940 DOI 10.17182/hepdata.26153

We present data on inclusive (e,p) scattering for electron beam energies of 460, 505, 647, 686, 698, and 800 MeV. Proton momentum spectra were obtained at fixed proton angles and for momenta from 300–1000 MeV/c. The data are compared to a popular parametrization that includes quasifree knockout, a quasideuteron mechanism, and pion production through the Δ.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Study of $K^0$ Meson Inclusive Production in the $K^+$ a Interaction at 11.2-{GeV}

The IFVE-JINR collaboration Akimenko, S.A. ; Belousov, V.I. ; Kolosov, V.N. ; et al.
Sov.J.Nucl.Phys. 53 (1991) 267-273, 1991.
Inspire Record 287742 DOI 10.17182/hepdata.40791

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Test of Scaling of the Massive Dihadron Cross Section

Kaplan, D.M. ; Guo, R. ; Brown, C.N. ; et al.
Phys.Rev.D 41 (1990) 2334, 1990.
Inspire Record 285484 DOI 10.17182/hepdata.22990

Measurements of the cross section for production of massive dihadrons by 800-GeV protons incident on a tungsten target are presented. These are compared with measurements taken at lower and higher s and with perturbative-QCD predictions. Scaling and A-dependence behaviors observed at lower energies are confirmed, and good agreement with QCD is obtained. Model dependences of earlier measurements are discussed.

2 data tables

No description provided.

Triple differential cross section. Note that the errors plotted in the original figure are 2 time too large. The numbers given here are correct.