About 300 000 $e^+e^-\to \phi\to K^0_L K^0_S$ events in the center of mass energy range from 984 to 1040 MeV were used for the measurement of the $\phi$ meson parameters. The following results have been obtained: $\sigma_0 = (1367 \pm 15 \pm 21) nb, m_{\phi}=(1019.504 \pm 0.011 \pm 0.033) MeV/c^2, \Gamma_\phi=(4.477 \pm 0.036 \pm 0.022) MeV, \Gamma_{e^+e^-}\cdot B(\phi\to K^0_L K^0_S) = (4.364 \pm 0.048 \pm 0.065)\cdot 10^{-4}$ MeV.
Updated measurements of the E+ E- --> PHI --> K0L K0S measured and 'bare' cross sections for SCAN 1.
Updated measurements of the E+ E- --> PHI --> K0L K0S measured and 'bare' cross sections for SCAN 2.
Updated measurements of the E+ E- --> PHI --> K0L K0S measured and 'bare' cross sections for SCAN 3.
New precise data of the$\Lambda^0$polarization are obtained in the EXCHARM experiment at the Serpukhov accelerator. The$\Lambda^0$
LAMBDA polarization as a function of PT for the whole XL region.
LAMBDA polarization as a function of PT for three XL regions.
This paper presents the results on charged particle yields and production ratios as measured by the NA56/SPY experiment for 450 GeV/c proton interactions on beryllium targets. The data cover a seconda
Positive particle yield from the 100mm Be target. Data are corrected for the pion or proton flux coming from strange particle decays.
Negative particle yield from the 100mm Be target. Data are corrected for the pion or antiproton flux coming from strange particle decays.
Positive particle yield from the 100mm Be target. Data are NOT corrected for the pion or proton flux coming from strange particle decays.
The reaction γp → K 0 Σ + has been measured with the SAPHIR detector at the electron stretcher ring ELSA. The total cross section rises up to a peak value of 1.1 μ b at a photon energy of 1.4 GeV. The differential cross sections dσ/dΩ are consistent with being flat throughout the measured energy range. The first measurement of the Σ + polarization in photon induced reactions was obtained.
Total cross section for the reaction GAMMA P --> K0 SIGMA+. Errors include statistics and the uncertainty on the acceptance calculation and photon flux.
Differential cross section for the reaction GAMMA P --> K0 SIGMA+. Errors are dominated by statistical uncertainties.
Measure of SIGMA+ polarization in the reaction GAMMA P --> K0 SIGMA+.
Production cross sections of K$^+$ and K$^-$ mesons have been measured in C+C collisions at beam energies per nucleon below and near the nucleon-nucleon threshold. At a given beam energy, the spectral slopes of the K$^-$ mesons are significantly steeper than the ones of the K$^+$ mesons. The excitation functions for K$^+$ and K$^-$ mesons nearly coincide when correcting for the threshold energy. In contrast, the K$^+$ yield exceeds the K$^-$ yield by a factor of about 100 in proton-proton collisions at beam energies near the respective nucleon-nucleon thresholds.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
Strange and multistrange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a Quark-Gluon Plasma takes place. The production yields of Λ s, Λ s, Ξ − s, and Ξ + s relative to the production of negative particles are presented for sulphur-tungsten interactions at 200 GeV/ c per nucleon. These production yields are compared to those produced in proton-tungsten interactions and the enhancements of strange and multistrange baryons and antibaryons are presented.
Hyperon to negative production ratios with sulphur beam.
Hyperon to negative production ratios with proton beam.
Strange and multistrange baryon enhancements.
In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.
Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).
CLASS1 (see Table for event classification).
CLASS1 (see Table for event classification).
The A-dependence is observed in $x_F$-distributions for the $\Lambda K^0$ system produced with the small transverse momentum in the neutron-nucleus interactions. For the $\Lambda$ hyperons similar dependence isn't seen. The result is interpreted as an effect from intermediate excitative nucleon state, which decays into strange particles. Such interpretation is confirmed experimental data on $\Lambda K$ pair production in the pion-nucleon interactions.
No description provided.
Total number of events is 387.
CT = Total number of events is 841.
DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.
Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.
Integrated rates extrapolated to the full x range.
Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.
The given errors are statistical only. The cross section presented as a function of the nominal excess energy.