The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.
The ratio of the production cross sections times branching fractions (sigma(Bc+) B(Bc+ to J/psi pi+))/ (sigma(B+) B(B+ to J/psi K+)) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Bc+/- and B+/- mesons with transverse momentum pt > 15 GeV and rapidity abs(y) < 1.6. The data sample corresponds to an integrated luminosity of 5.1 inverse femtobarns. The ratio is determined to be [0.48 +/- 0.05 (stat) +/- 0.03 (syst) +/- 0.05 (tau_{Bc})]% The J/psi pi+/- pi+/- pi-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(Bc+/- to J/psi pi+/- pi+/- pi-/+) / B(Bc+/- to J/psi pi+/-) is measured to be 2.55 +/- 0.80 (stat) +/- 0.33 (syst) +0.04/-0.01 (tau[Bc+]), consistent with the previous LHCb result.
The ratio of the production cross sections times branching fractions of $B_c^\pm\to J/\psi\pi^\pm$ and $B^\pm\to J/\psi K^\pm$ is measured in the kinematic region $p_T$> 15 GeV and |y| < 1.6. Beside the statistical and systematic errors, an uncertainty associated to the $B_c^{\pm}$ lifetime is quoted as a separate third error. The $B_c^\pm\to J/\psi\pi^\pm$ reconstruction efficiency has a dependence on the $B_c^\pm$ lifetime. Recently LHCb published a more precise $B_c^\pm$ lifetime measurement, which is significantly higher than the previous world average (PDG 2012). To determine the systematic uncertainty associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.
To determine the systematic uncertainty in the ratio of branching fractions associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.
The process $e^+e^-\to n\bar{n}$ has been studied at the VEPP-2000 $e^+e^-$ collider with the SND detector in the energy range from threshold up to 2 GeV. As a result of the experiment, the $e^+e^-\to n\bar{n}$ cross section and effective neutron form factor have been measured.
The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2011. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor.
The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2012. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor. NOTE: corrected an apparent typo in paper for second-last data point (1990 $\to$ 1960) to make the numbers consistent with the plot in Figure 9.
We report on the production of inclusive $\Upsilon$(1S) and $\Upsilon$(2S) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV at the LHC. The measurement is performed with the ALICE detector at backward ($-4.46< y_{{\rm cms}}<-2.96$) and forward ($2.03< y_{{\rm cms}}<3.53$) rapidity down to zero transverse momentum. The production cross sections of the $\Upsilon$(1S) and $\Upsilon$(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of $\Upsilon$(1S). A suppression of the inclusive $\Upsilon$(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects.
Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
Inclusive UPSI(2S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.
A search is presented for standard model (SM) production of four top quarks (t t-bar t t-bar) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6 inverse femtobarns recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM four top quark production is approximately 1 fb. A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 +/- 17 fb is expected.
Measurement of an upper limit on tttt is set by performing a simultaneous maximum likelihood fit to the distributions in the BDT event discriminant for signal and background in six event categories in the single muon plus jets and single electron plus jets channels.
A data-driven method was applied to measurements of Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance $\Delta\eta$-dependent and $\Delta\eta$-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is $\Delta\eta$-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of $\eta$ within the measured range of pseudorapidity $|\eta|<1$. The relative flow fluctuation was found to be $34\% \pm 2\% (stat.) \pm 3\% (sys.)$ for particles of transverse momentum $p_{T}$ less than $2$ GeV/$c$. The $\Delta\eta$-dependent part may be attributed to nonflow correlations, and is found to be $5\% \pm 2\% (sys.)$ relative to the flow of the measured second harmonic cumulant at $|\Delta\eta| > 0.7$.
The second harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The third harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The second harmonic four-particle cumulant for ($\eta_{\alpha}$, $\eta_{\alpha}$, $\eta_{\beta}$, $\eta_{\beta}$) quadruplets for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.
Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.
Ratio of charged pion cross section, as shown in Fig.6.
A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\mu = 1.17 \pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\mu_{\mathrm{ggF}} = 1.32 \pm 0.38$, $\mu_{\mathrm{VBF}} = 0.8 \pm 0.7$, $\mu_{{WH}} = 1.0 \pm 1.6 $, $\mu_{{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\mu_{{t\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in the individual analysis categories, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data. The VH dilepton category is not shown because with only two events in the combined sample, the fit results are not meaningful.
The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in groups of categories sensitive to individual production modes, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data.
Measured signal strengths, for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma, of the different Higgs boson production modes and the combined signal strength mu obtained with the combination of the 7 TeV and 8 TeV data.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
A measurement of the inclusive $W \to \mu\nu$ production cross-section using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 7 {\rm \, TeV}$ is presented. The analysis is based on an integrated luminosity of about $1.0 {\rm \, fb}^{-1}$ recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than $20 {\rm \, Ge\kern -0.1em V\!/}c$ and pseudorapidity between 2.0 and 4.5. The $W^{+}$ and $W^{-}$ production cross-sections are measured to be $$\sigma_{W^{+} \to \mu^{+}\nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 {\rm \, pb},$$ $$\sigma_{W^{-} \to \mu^{-}\overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 {\rm \, pb},$$ where the first uncertainty is statistical, the second is systematic and the third is due to the luminosity determination. Cross-section ratios and differential distributions as functions of the muon pseudorapidity are also presented. The ratio of $W^{+}$ to $W^{-}$ cross-sections in the same fiducial kinematic region is determined to be $$\frac{\sigma_{W^{+} \to \mu^{+}\nu}}{\sigma_{W^{-} \to \mu^{-}\overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$ where the uncertainties are statistical and systematic, respectively. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Correction for final state radiation for $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\bar{\nu}$ in bins of muon pseudorapidity. No loss due FSR is observed for $W^-$ in the last pseudorapidity bin because of lack of statistics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic and luminosity.
Ratio of $W^+$ to $W^-$ cross-section in bins of muon pseudorapidity. The uncertainties are statistical and systematic.