A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt(s) = 7 TeV. The measurement is based on 4.7 fb-1 of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with Standard Model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.
The observed and standard model prediction for the distribution of missing ET in signal region A.
The observed 95% exclusion limits for the five signal regions.
The expected 95% exclusion limits for the five signal regions.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results.
Missing transverse energy distribution in the signal region SR1a showing both data points with statistical errors only and the expected standard model background.
Missing transverse energy distribution in the signal region SR2 showing both data points with statistical errors only and the expected standard model background.
Transverse momentum distribution of the leading lepton in the signal region SR1a showing both data points with statistical errors only and the expected standard model background.
The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in pp collisions at $\sqrt{s}=7$ TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d$^{2}$N/d$y$d$p_{\rm T}$ at midrapidity $|y|<0.5$ in the range $0<p_{\rm T}<6$ GeV/$c$ for K$^{*}$(892)$^{0}$ and $0.4<p_{\rm T}<6$ GeV/$c$ for $\phi$(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at $\sqrt{s}=7$ TeV, the ratios K$^{*}$/K$^{-}$, $\phi$/K$^{*}$, $\phi$/K$^{-}$, $\phi/\pi^{-}$, and ($\Omega$ + $\overline{\Omega}$)/$\phi$ are presented. The values of the K$^{*}$/K$^{-}$, $\phi$/K$^{*}$ and $\phi$/K$^{-}$ ratios are similar to those found at lower centre-of-mass energies. In contrast, the $\phi/\pi^{-}$ ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The ($\Omega$ + $\overline{\Omega}$)/$\phi$ ratio in the $p_{\rm T}$ range $1$-$5$ GeV/$c$ is found to be in good agreement with the prediction of the HIJING/BB v2.0 model with a strong colour field.
pT-differential production yields of K*0 mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
pT-differential production yields of phi mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.
Normalized differential primary charged particle yield in the centrality interval 0-5%.
Normalized differential primary charged particle yield in the centrality interval 5-10%.
Normalized differential primary charged particle yield in the centrality interval 10-20%.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-pT electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb^-1. No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In MSUGRA/CMSSM models with tan beta = 10, A_0 = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of SUSY models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
The meff_incl distribution in Signal Region A.
The meff_incl distribution in Signal Region Ap.
The meff_incl distribution in Signal Region B.
This paper describes measurements of the sum of the transverse energy of particles as a function of particle pseudorapidity, eta, in proton-proton collisions at a centre-of-mass energy, sqrt(s) = 7 TeV using the ATLAS detector at the Large Hadron Collider. The measurements are performed in the region |eta| < 4.8 for two event classes: those requiring the presence of particles with a low transverse momentum and those requiring particles with a significant transverse momentum. In the second dataset measurements are made in the region transverse to the hard scatter. The distributions are compared to the predictions of various Monte Carlo event generators, which generally tend to underestimate the amount of transverse energy at high |eta|.
$E_{\perp}$ density for the minimum bias selection.
$E_{\perp}$ density for the dijet selection in the transverse region.
$\sum E_{\perp}$ for the minimum bias selection, $0.0 < |\eta| < 0.8$.
Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X < 200$ GeV/$c^2$) $\sigma_{\rm SD}/\sigma_{\rm INEL} = 0.21 \pm 0.03, 0.20^{+0.07}_{-0.08}$, and $0.20^{+0.04}_{-0.07}$, respectively at centre-of-mass energies $\sqrt{s} = 0.9, 2.76$, and 7~TeV; for double diffraction (for a pseudorapidity gap $\Delta\eta > 3$) $\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\sqrt{s} = 0.9, 2.76$, and 7~TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi)$ mb at $\sqrt{s} =$ 2.76~TeV and $73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi)$ mb at $\sqrt{s}$ = 7~TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
Production ratios of SD with $M_{X} < 200 GeV/c^2$ to INEL.
Production ratios of DD with $\Delta\eta >3$ to INEL.
Single diffraction cross-section for $M_{X} < 200 GeV/c^2$.
The PHENIX experiment has measured the production of neutral pions in Au+Au collisions at sqrt(s_NN)=200 GeV. The new data offer a fourfold increase in recorded luminosity, providing higher precision and a larger reach in transverse momentum, p_T, to 20 GeV/c. The production ratio of eta/pi^0 is 0.46+/-0.01(stat)+/-0.05(syst), constant with p_T and collision centrality. The observed ratio is consistent with earlier measurements, as well as with the p+p and d+Au values. The production of pi^0 is suppressed by a factor of 5, as in earlier findings. However, with the improved statistical precision a small but significant rise of the nuclear modification factor, R_AA, vs p_T, with a slope of 0.0106+/-^(0.0034)_(0.0029)[GeV/c]^-1, is discernible in central collisions. A phenomenological extraction of the average fractional parton energy loss shows a decrease with increasing p_T. To study the path length dependence of suppression, the pi^0 yield was measured at different angles with respect to the event plane; a strong azimuthal dependence of the pi^0 R_AA is observed. The data are compared to theoretical models of parton energy loss as a function of the path length, L, in the medium. Models based on pQCD are insufficient to describe the data, while a hybrid model utilizing pQCD for the hard interactions and AdS/CFT for the soft interactions is consistent with the data.
Invariant yields of neutral pions, all centralities
Invariant yields of neutral pions, all centralities
$\Eta/ \pi^0 ratios
We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.
(Color online.) The invariant $J/\psi$ cross section versus $p_{T}$ in p+p collisions at $\sqrt{s}$ = 200 GeV. The vertical bars and boxes depict the statistical and systematic uncertainties, respectively. Also shown are results published by STAR [15] and PHENIX [20]. The curves show theoretical calculations described in the text.
(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.
$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.