We present measurements of forward-backward energy asymmetries of τ-lepton decay products from the reaction e+e−→τ+τ− in data collected with the MAC detector operating at the SLAC storage ring PEP at a center-of-mass energy of 29 GeV. The energy asymmetries for the decays τ→ντeν¯e, τ→ντμν¯μ, τ→ντπ, and τ→ντρ are interpreted as effects caused by the combination of maximally parity-violating weak τ decays and a longitudinal polarization produced by the interference of electromagnetic and weak processes. From the forward-backward polarization asymmetry AP=(0.06±0.07)×(1±0.011), we determine the coupling-constant product gaegvτ=(0.26 ±0.31)×(1±0.011). Assuming gae=-(1/2 as expected, we find gvτ=(-0.52±0.62)×(1±0.011), consistent with the prediction of the Glashow-Weinberg-Salam model of electroweak interactions. Alternatively, assuming the standard-model prediction of negligible polarization in τ-pair production, the leptonic energy spectra are used to measure the Michel parameter to be 0.79±0.10±0.10, consistent with the V-A hypothesis for the τν¯τ-W vertex.
We report results on the differential and total cross sections for inclusive production of the charmed particles D*+, D*0, D0, D+, Ds, and Λc in e+e− annihilations at √s=10.55 GeV. Widely used quark fragmentation models are discussed and compared with the measured charmed-particle momentum distributions. This comparison, as well as that with measurements at other center-of-mass energies, shows the need to take QCD corrections into account and their importance for a correct interpretation of the model parameters. The observed rate of D0 and D+ production is compared to the expected total charm production cross section. We measure the probability of a charmed meson being produced as a vector meson and the D*+ decay branching fraction into D0π+.
We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16
We use the reaction e+e−→hadrons, in the Mark J detector at the DESY electron-positron collider PETRA, to determine the hadronic cross section up to 46.78 GeV. The production of a top quark with a charge equal to (2/3) is excluded up to 46.6 GeV with 95% C.L. The observed rise in the cross section at higher energies is consistent with the electroweak prediction for a Z0 mass of 93 GeV. We describe some unusual muon inclusive events.
We have measured the inclusive branching ratio for B→ψX to be (1.09±0.16±0.21)%, and the exclusive branching ratios for B−→ψK− and B¯ ¯0 *0 to be (0.09±0.05)% and (0.41±0.18)%, respectively. The mass difference between neutral and charged B mesons is 1.1±2.1 MeV, while the difference between the mass of Υ(4S) and twice the mean B-meson mass is 18.5±3.0 MeV. The ψ momentum distribution implies a substantial two-body decay (in agreement with direct measurements), but also some combination of B→ψX with MX>1.5 GeV, and B→ψ’X.
Data from the High Resolution Spectrometer at the SLAC storage ring PEP have been used to study the inclusive production of baryons and mesons. Time-of-flight measurements are used to identify the charged hadrons. Neutral hadrons are identified from effective-mass peaks associated with their decay into two charged particles. Cross sections and other inclusive production characteristics are presented for π±, K±, and K0 (K¯0) mesons, and for the baryons (antibaryons) p (p¯) and Λ (Λ¯). The ratio of the inclusive cross section to the point cross section for the K0 and K¯0 mesons is R(K0,K¯0)=6.15±0.13±0.25, and for Λ and Λ¯, R(Λ,Λ¯)=0.846±0.036±0.085. The neutral-hadron differential cross sections are compared with the predictions of the Lund string model.
The two-photon production of the η meson has been observed, and a value has been determined for the two-photon η decay width by a measurement of the cross section σ(e+e−→e+e−η) where η→γγ. The measurement was made with the TPC/Two-Gamma facility at the SLAC e+e− collider PEP, with an accumulated data sample of 64.5 pb−1. The η→γγ events were both triggered and detected by the pole-tip calorimeter. The measured two-photon η decay width is Γη→γγ=0.64±0.14 (statistical) ±0.13 (systematic) keV, in agreement with earlier similarly determined values.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.