A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
The two-photon production of the η meson has been observed, and a value has been determined for the two-photon η decay width by a measurement of the cross section σ(e+e−→e+e−η) where η→γγ. The measurement was made with the TPC/Two-Gamma facility at the SLAC e+e− collider PEP, with an accumulated data sample of 64.5 pb−1. The η→γγ events were both triggered and detected by the pole-tip calorimeter. The measured two-photon η decay width is Γη→γγ=0.64±0.14 (statistical) ±0.13 (systematic) keV, in agreement with earlier similarly determined values.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.
We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.
The energy-energy correlation cross section for hadrons produced in electron-positron annihilation at a center-of-mass energy of 29 GeV has been measured with the MAC detector at SLAC. The result is corrected for the effects of detector resolution, acceptance, and initial-state radiation. The correlation is measured in two independent ways on the same data sample: the energy weights and angles are obtained either from the energy flow in the finely segmented total absorption calorimeters or from the momenta of charged tracks in the central drift chamber. This procedure helps reduce systematic errors by cross-checking the effects of the detector on the measurement, particularly important because the corrections depend on complex Monte Carlo simulations. The results are compared with the predictions of Monte Carlo models of complete second-order perturbative quantum chromodynamics and fragmentation, with the following conclusions: (1) fitting the asymmetry for large correlation angles gives values for αS of 0.120±0.006 in perturbation theory, 0.185±0.013 in the Lund string model, and values which vary from 0.105 to 0.140 (±0.01) in the incoherent jet models, depending on the gluon fragmentation scheme and the algorithm used for momentum conservation; and (2) the string fragmentation model provides a satisfactory description of the measured energy-energy correlation cross section, whereas incoherent jet formation does not.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
The multiplicities of charged secondaries in proton-proton collisions were determined using the split-field-magnet detector at the CERN Intersecting Storage Rings (ISR). Measurements are presented on multiplicity distributions both for inelastic and non-single-diffractive events at four different energies s=30.4, 44.5, 52.6, and 62.2 GeV. The results reported here represent the first high-statistics measurement of charged multiplicity distributions at ISR energies with a magnetic detector covering nearly the full solid angle.