None
No description provided.
None
No description provided.
The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
The differential cross section and analyzing power of the reaction pp → d π + were measured for nine incident proton energies between 725 and 1000 MeV. A magnetic spectrometer was used to detect either deuterons or pions. Cross-section and analyzing-power angular distributions were respectively fitted with Legendre polynomial and associated Legendre function expansions, the coefficients of which were found to vary smoothly with energy in the vicinity of the alleged 3 F 3 dibaryon resonance.
Data present here in form of Legendre polynomial fit.
Legendre Polynomial fit to cross section.
Legendre polynomial fit to analysing power.
We have observed the production of\(\bar D^0 \) andD− mesons in neutron carbon interactions at 40–70 GeV/c. The experiment was performed with the spectrometer BIS-2 located in the neutron beam 4N of the Serpukhov accelerator.
No description provided.
No description provided.
CORRECTED FOR ACCEPTANCE. AUTHORS NAMED THIS SPECTRUM 'INVARIANT'.
Differential cross sections of proton Compton scattering have been measured in the angular range between 50° and 130° at incident photon energies from 900 MeV to 1150 MeV. A sharp dip in the angular distribution found by a Bonn group at 110° in the photon energy region around 900 MeV is not observed in the present measurement. A new dip-bump structure is found at photon energies above 1050 MeV, which is similar to that for pion-nucleon scattering.
No description provided.
No description provided.
No description provided.
The angular distributions of the analyzing power for the pp → dπ + reaction have been measured at seven energies T p = 1.2, 1.4, 1.6, 1.7, 1.8, 2.0 and 2.3 GeV. The data show a strong energy dependence with a structure centered at √ s π d = 2.66 GeV. Possible interpretations are presented in the frame of the OPE model and involving the question of the excitation of a dibaryon resonance.
No description provided.
No description provided.
No description provided.
The p̄p annihilation cross section has been measured with good resolution (∼2 MeV rms) in the mass range 1900–1960 MeV. No narrow structures are seen, the 90% confidence level upper limit being 8–12 mb‐MeV for the integrated area of a resonance in this mass range. However, we do not rule out a very narrow bump‐dip structure seen in an earlier experiment in the 1935–1941 MeV mass interval. The data also do not support the existence of a broad structure previously reported at 1937 MeV.
Fit of form A + B/D gives A = 8.5 +- 2.5mb and B = 40.7 +- 1.3mb in the mass range 1900 to 1960 MeV.