None
No description provided.
No description provided.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
We have searched for direct photons of low PT (≤1.0 GeV/c) at θc.m.=90° in pp collisions at √s =63 GeV. We used two independent methods: direct detection in NaI crystals and conversion to e+e− pairs. No signal is observed; the photon spectrum is well described by the decay of hadrons. The result is consistent with a direct low-PT photon signal reported at √s =12 GeV, but excludes a rapid growth of soft-photon production with √s .
No description provided.
We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16<Q2<1.6 (GeV/c)2].
Data read from graph in preprint. Statistical errors only.
Data read from graph. Statistical errors only.
Data read from graph. Statistical errors only.
The reaction γγ → 2 π + 2 π − π 0 has been studied using the the ARGUS detector at the e + e − storage ring DORIS II at DESY. The production of the vector-meson pair ωϱ 0 is observed for the first time. The cross section for γγ → ωϱ 0 and the topological cross section for γγ → 2 π + 2 π − π 0 are given. The angular distribution in ωϱ 0 events do not indicate any specific dominant spin-parity; they are consistent with isotropic production and decay of the ω and ϱ 0 mesons over the available W γγ range.
Topological cross section.
OMEGA RHO0 Production cross section.
The reaction γγ → 2 π + 2 π − 2 π 0 has been studied using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of ω mesons is observed and, in particular, the reaction γγ → ωω is seen for the first time. The cross section for γγ → ωω has an enhancement at ∼ 1.9 GeV/ c 2 of about 10 nb. The cross sections for γγ → 2 π + 2 π − 2 π 0 and γγ → ωπ + π − π 0 are also given.
Topological cross section. 14 pct systematic uncertainty not included.
Cross section for (omega omega) production. Additional 25 pct systematic error not included.
Cross section for (omega pi+ pi- pi0) where (omega omega) events have been removed. Additional 15 pct systematic error not included.
A measurement of the total cross section for the reaction p p → π + π − has been performed for seven values of the incident momentum between 158 and 275 MeV/ c . The values obtained, if compared with previous results at higher momenta, agree with a 1/ß dependence. The differential cross section sssumed over the whole incident momentum range has also been measured and the result of a fit by Legendre polynomials is given.
No description provided.
No description provided.
4*PI*LEG(L=0,P=4) = 1.07 +- 0.13 mb.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
This is the first full solid angle analysis of large transverse energy events in\(p\bar p\) collisions at the CERN collider. Events with transverse energies in excess of 200 GeV at\(\sqrt s= 630 GeV\) are studied for any non-standard physics and quantitatively compared with expectations from perturbative QCD Monte Carlo models. A corrected differential cross section is presented. A detailed examination is made of jet profiles, event jet multiplicities and the fraction of the transverse energy carried by the two jets with the highest transverse jet energies. There is good agreement with standard theory for events with transverse energies up to the largest observed values\(( \approx \sqrt {s/2} )\) and the analysis shows no evidence for any non-QCD mechanism to account for the event characteristics.
No description provided.