We searched for possible signatures of top-quark production in 508 e+e− hadronic annihilation events collected at s=52 GeV by the TOPAZ detector at the KEK e+e− collider TRISTAN. The observed hadronic cross section and shape of hadronic events are consistent with the standard-model predictions without top quarks. A lower limit (95% confidence level) on the mass of the lightest top meson is set at 25.8 GeV.
No description provided.
None
No description provided.
Data from e + e − annihilations at 29 GeV have been used to measure the production cross section and fragmentation function of η mesons. The signal is observed in the η → γγ decay channel. The fragmentation for p η >1.5 GeV/ c agrees well with the prediction of the Lund model, whereas the prediction of the Webber model lies above the data. The mean multiplicity is measured to be 〈 n η 〉=0.58±0.10 η mesons per hadronic event, of which 0.51 represents the direct production of η and η ′ mesons in the fragmentation chain.
Statistical errors only.
Extrapolated to full z range using LUND model.
The absolute value of the π 0 photoproduction cross section on the proton recently measured near threshold enables to reanalyze previous data collected on 2 H, 3 He, and 4 He relatively to the proton. Absolute cross sections are presented for these nuclei in the energy region extending up to 10 MeV above threshold. The threshold s-wave amplitudes for 2 H and 3 He thus obtained are discussed in relation with the neutron threshold amplitude E ( nπ 0 ) 0+ value.
No description provided.
No description provided.
No description provided.
Vector mesons produced in the reaction e + e − →V+X at √ s =29 GeV were isolated by observing D ∗ mesons through the D ∗+ → D 0 π + decay. The D 0 decay modes used are D 0 →K3 π , K π , K π , and K π ( π 0 ). The data, which correspond to an integrated luminosity of 300 pb −1 , were collected by the High Resolution Spectrometer at PEP. Spin density matrix elements for the D ∗ meson are measured as a function of the energy sharing variable Z D ∗ . There is no evidence for alignment of D ∗ mesons produced in e + e − annihilation at our energy.
Spin density matrix for D0 --> K PI decay mode.
Spin density matrix for D0 --> K 3PI decay mode.
Spin density matrix for D0 --> K PI (PI0) decay mode.
The production cross sections for the Λ, Σ0, Ξ−, Σ0 (1385), Ξ0 (1530) and Ω− hyperons have been measured, both in the continuum and in direct ϒ decays. Baryon rates in direct ϒ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed.
Hyperon rates per multihadronic event in direct UPSILON decays.
Hyperon rates per multihadronic event in the continuum.
LAMBDA spectrum (1/SIG(had))*D(SIG)/D(X) for UPSILON (1S) direct decays, with X = P/Pmax.
Significant production of G(1590), a scalar glueball candidate, is observed in a study of η pairs produced in π−N central collisions at 300 GeV/ c .
No description provided.
No description provided.
The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.
No description provided.
No description provided.
No description provided.
A search has also been made for a fourth generation, charge 1/3 quark (b'). Assuming that theb' mass is smaller than that of the top quark and that it can-not be produced inW decays, the mass limits, using the above procedures, are respectivelymb'>32 GeV/c2 andmb'>44 GeV/c2, both at 95% confidence level.
The inclusive cross sections for prompt photon production by π− and π+ on protons have been measured with a beam momentum of 280 GeV/c using a fine grained electromagnetic calorimeter and the CERN Omega spectrometer. The transverse momentum and FeynmanxF ranges covered are 4.0
Invariant cross section. UPDATE (03 DEC 2018): systematic error of 4th bin for PT = 4.37 GEV/C corrected from 13.5 to 13.2, slight corrections to PT weighted averages (4.11 -> 4.12, 4.36 -> 4.37, 4.61 -> 4.62, 5.72 -> 5.71, 6.37 -> 6.36).
Invariant cross section. UPDATE (03 DEC 2018): slight corrections to PT weighted averages (5.20 -> 5.21, 5.70 -> 5.71, 6.32 -> 6.34).
PT DISTRIBUTIONS FOR SELECTED XF INTERVALS.