None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////ERROR IN POLARIZATION OF INITIAL GAMMAS IS NOT GIVEN).
None
No description provided.
None
No description provided.
The analyzing power A and spin-transfer parameters KNN, KSS, KSL, and KLL have been measured in the np charge-exchange (np→pn) region at 790 MeV. These data provide new and unique information on the spin dependence of the np interaction in the charge-exchange region. Models which explain the charge-exchange peak in the np elastic differential cross section as being due to interference between one-pion exchange and a slowly varying background are in basic agreement with the data.
No description provided.
No description provided.
USING PHASE-SHIFT VALUES FOR KLS AND KSL.
The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.
NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.
The target asymmetry in γ d → pn has been measured at proton c.m. angles of 70°, 100° and 130° in the photon energies between 0.3 and 0.7 GeV. Results show relatively small asymmetry values in contrast to large proton polarizations. A phenomenological analysis by Ikeda et al. does not reproduce the present data, especially in the lower energy region.
STATISTICAL ERRORS ONLY. MORE DETAILED DATA SUPPLIED BY S.KATO.
STATISTICAL ERRORS ONLY. MORE DETAILED DATA SUPPLIED BY S.KATO.
STATISTICAL ERRORS ONLY. MORE DETAILED DATA SUPPLIED BY S.KATO.
We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.
No description provided.