In an exposure of the Argonne National Laboratory 12-foot hydrogen bubble chamber to a beam of 12.4-GeV/c protons, we have measured the total and differential cross sections for the inclusive reactions p+p→γ+X, π0+X, K0+X, and Λ+X, as well as estimates for the inclusive η and Σ0 cross sections. We present the average number of π0, K0, and Λ as a function of the associated charge multiplicity. We observe that the average charge multiplicity in pp collisions is the same whether or not a π0, K0, or Λ is also produced in the interaction. Invariant cross sections are presented as a function of PT2 and x, the Feynman scaling variable. The π0 differential cross sections are consistent with the relation dσdP(π0)=12[dσdP(π+)+dσdP(π−)] for all pion momenta P. The differential cross section for Λ production indicates a break in the distribution of |t−tmin|=1.4 (GeV/c)2. The polarization of the Λ's is found to be consistent with zero for all values of x.
No description provided.
The angular distribution of 2720 tracks of 1085 hadronic final states produced from (e+e-) annihilation has been studied in the 1.2 to 3.0 GeV total centre-of-mass energy range. If we parametrize the angular distribution in terms off(θ) =1 + A cos2 θ, where 6 is the angle between the hadronic track produced and the colliding-beam direction, the results show thatA is less than 0.21, with 90% confidence.
ANGULAR DISTRIBUTION OF CHARGED HADRONS FOUND TO BE 1 + (0.07 +- 0.11)*(COS(THETA)**2).
The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
In a 35 000-picture exposure of the Fermilab 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam 1863 neutral V0's were measured. The inclusive cross sections for γ, Ks0, Λ0Σ0, and Λ¯0Σ¯0 are 257 ± 18 mb, 7.3 ± 0.6 mb, 3.6 ± 0.4 mb, and 1.0 ± 0.3 mb, respectively. The correlation with charged particles and other inclusive features are studied.
No description provided.
In an exposure of the Fermi National Accelerator Laboratory 30-in. bubble chamber to a beam of 205-GeV/c protons, we have determined total and differential cross sections for the inclusive reactions p+p→γ+X, π0+X, (K0K¯0)+X, Λ+X. Invariant distributions in x indicate that for γ, K0, Λ production, scaling has set in somewhere before 69 GeV. The γ differential cross sections are consistent with the relation dσdPu(π0)=12[dσdPu(π+)+dσdPu(π−)] for all Pu, where Pu=PL* or P⊥. The differential cross sections for Λ and K0 production indicate a break in the distribution at |t−tmin|=1.5(GeVc)2 and 0.5(GeVc)2, respectively. The Λ polarization is found to be - (0.25 ± 0.26), consistent with zero throughout the x region.
No description provided.
Inclusive production of Σ + , Σ − and Σ 0 hyperons in K − p interactions at 14.3 GeV/ c has been studied and compared to Λ production. Cross sections are presented as a function of longitudinal and transverse momenta and compared to the pp → Σ + + anything data.
No description provided.
No description provided.
No description provided.
Inclusive proton production in pp interactions at 205 GeV/c is studied using the Fermi National Accelerator Laboratory (Fermilab) 30-in. bubble chamber. The invariant cross section is presented in terms of several kinematic variables and compared with similar data obtained from counter experiments at Fermilab and at the CERN Intersecting Storage Rings (ISR). An important feature of this experiment is that it provides data for much wider ranges of the four-momentum transfer than have been attained in the counter experiments. It also gives full information on the associated charged-particle multiplicity of every event, thus permitting a detailed investigation of how various kinematic quantities depend on this parameter.
No description provided.
No description provided.
No description provided.
We have measured, as a function of transverse momentum (p⊥), the invariant cross section Edσd3p for the production of π±, K±, p, p¯, d, and d¯ in proton collisions with a tungsten (W) target at incident proton energies of 200, 300, and 400 GeV. The measurements were made in the region of 90° in the c.m. system of the incident proton and a single nucleon at rest. Measurements were also made with 300-GeV protons incident on Be, Ti, and W targets of equal interaction length. These p-nucleus measurements, which show a strong dependence on atomic number at high p⊥, were used to extract effective proton-nucleon cross sections by extrapolation to atomic number unity. At large values of the scaling variable x⊥=2p⊥s, where s is the square of the c.m. energy, the pion data are found to be well represented by the expression (s)−ne−ax⊥, with n=11.0±0.4 and a=36.0±0.4. x⊥<0.35, where similar measurements have been made at the CERN ISR, our data are in good agreement with the ISR data.
No description provided.
No description provided.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.
No description provided.