The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
We report measurements of the photon beam asymmetry $\Sigma$ for the reaction $\vec{\gamma} p\to K^+\Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $\Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $\Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $\Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $\Sigma = 1.00\pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $\Sigma = 0.41 \pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.
In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.
The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$ψ(μ^+μ^-)ϕ$(1020) (K$^+$K$^-$) and B$^+$$\to$ J/$ψ(μ^+μ^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$ are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
A search for $γ$H production is performed with data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of H $\to$$\mathrm{b\bar{b}}$ and H $\to$ 4$\ell$ are analyzed. This study examines effective HZ$γ$ and H$γγ$ anomalous couplings within the context of an effective field theory. In this approach, the production cross section is constrained to be $σ_{γ\text{H}}$$\lt$ 16.4 fb at 95% confidence level (CL). Simultaneous constraints on four anomalous couplings involving HZ$γ$ and H$γγ$ are provided. Additionally, the production rate for H $\to$ 4$\ell$ is examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. Assuming the standard model values for the Yukawa couplings of the bottom and top quarks, the following simultaneous constraints are obtained: $κ_\text{u}$ = (0.0 $\pm$ 1.5) $\times$ 10$^{3}$, $κ_\text{d}$ = (0.0 $^{+6.7}_{-6.8}$) $\times$ 10$^{2}$, $κ_\text{s}$ = 0 $^{+30}_{-32}$, and $κ_\text{c}$ = 0.0 $^{+2.3}_{-2.8}$. This rules out the hypothesis that up- or down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
The coherent J/$\psi$ photoproduction cross section is measured for the first time at midrapidity in peripheral to semicentral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. The centrality differential cross section ${\rm d} \sigma/ {\rm d}y$ is reported for the centrality range 40-90%, together with the doubly-differential cross section ${\rm d}^2 \sigma /{\rm d}y {\rm d} p_{\rm T}$, extracted in two peripheral centrality classes. The J/$\psi$ mesons are reconstructed in the dielectron channel, in the rapidity interval $|y| <$ 0.9 using the ALICE central barrel detectors. The J/$\psi$ cross section at midrapidity is statistically compatible to the earlier ALICE measurement at forward rapidity and at the same centre-of-mass energy, and shows only a mild centrality dependence over the covered range. Several sets of theoretical calculations taking into account the hadronic overlap in the collisions but ignoring possible final-state effects from a hot expanding medium are found to give a fairly good description of the current measurements within uncertainties.
The transverse momentum spectra and integrated yields of $\overlineΣ^{\pm}$ have been measured in pp and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE experiment. Measurements are performed via the newly accessed decay channel $\overlineΣ^{\pm} \rightarrow {\rm\overline{n}}π^{\pm}$. A new method of antineutron reconstruction with the PHOS electromagnetic spectrometer is developed and applied to this analysis. The $p_{\rm T}$ spectra of $\overlineΣ^{\pm}$ are measured in the range $0.5 < p_{\rm T} < 3$ GeV/$c$ and compared to predictions of the PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4 models. The EPOS LHC and EPOS4 models provide the best descriptions of the measured spectra both in pp and p-Pb collisions, while models which do not account for multiparton interactions provide a considerably worse description at high $p_{\rm T}$. The total yields of $\overlineΣ^{\pm}$ in both pp and p-Pb collisions are compared to predictions of the Thermal-FIST model and dynamical models PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4. All models reproduce the total yields in both colliding systems within uncertainties. The nuclear modification factors $R_{\rm pPb}$ for both $\overlineΣ^{+}$ and $\overlineΣ^{-}$ are evaluated and compared to those of protons, $Λ$ and $Ξ$ hyperons, and predictions of EPOS LHC and EPOS4 models. No deviations of $R_{\rm pPb}$ for $\overlineΣ^{\pm}$ from the model predictions or measurements for other hadrons are found within uncertainties.
Precision measurements of Higgs boson differential production cross sections are a key tool to probe the properties of the Higgs boson and test the standard model. New physics can affect both Higgs boson production and decay, leading to deviations from the distributions that are expected in the standard model. In this paper, combined measurements of differential spectra in a fiducial region matching the experimental selections are performed, based on analyses of four Higgs boson decay channels ($\gamma\gamma$, ZZ$^{(*)}$, WW$^{(*)}$, and $\tau\tau$) using proton-proton collision data recorded with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The differential measurements are extrapolated to the full phase space and combined to provide the differential spectra. A measurement of the total Higgs boson production cross section is also performed using the $\gamma\gamma$ and ZZ decay channels, with a result of 53.4$^{+2.9}_{-2.9}$ (stat)$^{+1.9}_{-1.8}$ (syst) pb, consistent with the standard model prediction of 55.6 $\pm$ 2.5 pb. The fiducial measurements are used to compute limits on Higgs boson couplings using the $\kappa$-framework and the SM effective field theory.
Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ($\tau_\mathrm{h}$) that originate from genuine tau leptons in the CMS detector against $\tau_\mathrm{h}$ candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a $\tau_\mathrm{h}$ candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine $\tau_\mathrm{h}$ to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient $\tau_\mathrm{h}$ reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved $\tau_\mathrm{h}$ reconstruction method are validated with LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV.