We report on a measurement for the branching-ratio X 0 → 2γ X 0 ar all. Our result is X 0 → 2γ X 0 → all = (2.9 ± 0.9)% .
BY COMPARISON WITH THE KNOWN ETA PRODUCTION CROSS SECTION.
From a 3.5 ev/μb exposure of the BNL 80 inch chamber filled with deuterium to a 7.0 GeV/ c p beam we obtained 664 events in the channel p n → p π − p . The channel cross section is (1270 ± 110 60 ) μb. The final state is dominated by Δ (1230) production. The experimental data is well described by a one-pion exchange model with off-mass shell corrections.
No description provided.
As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.
No description provided.
No description provided.
No description provided.
A study is made of η 0 production in p p → 3π + 3π − π 0 (7500 events) at an incident momentum of 720 MeV/ c . The reaction is dominated by production of ω 0 (≈68 o/o). The η o production has been studied by means of two independent methods: the first, a study of correlations between the (4 π ) ± and (5 π ) 0 and the (3 π ) 0 systems, circumvents the problem of ω 0 reflections. The second attempts to isolate the η 0 4π channel by means of rigorous selections using the decay properties of η 0 and ω 0 . The results of the two methods are consistent and confirnm the production of σ +- , D 0 and E 0 with the decays ifD 0 → σ ± π ± → η 0 π + π ( su −), E 0 → σ ± π ∓ → η ( su 0) π + π − , E 0 → η 0 π + π − .
CORRECTED FOR UNOBSERVED ETA DECAYS AND I=0 ASSUMED FOR ETAPRIME, D(1285) AND E(1420) --> ETA PI0 PI0.
The reaction π − p → ηφ has been studied at 1.8 GeV/ c incident pion momentum using the Bologna-CERN NBC set-up, in order to investigate the electromagnetic decay mode φ → ηγ . We observed (27 ± 6) events, yielding a branching ratio Γ(φ → ηγ) Γ(φ → total ) = (7.3 ± 1.9)% . The theoretical implications of this result are discussed.
ASSUMING THE TOTAL PHI CROSS SECTION IS 35 +- 5 MUB, THIS YIELDS THE BRANCHING RATIO OF (7.3 +- 1.9) PCT FOR PHI --> ETA GAMMA.
The reaction pn → pp π − at 7.0 GeV/ c is studied in a pd experiment. Observations on isobar production and low-mass enhancement are reported. The I = 1 2 isobars and the low-mass enhancement produced at the neutron vertex are discussed in terms of the diffraction dissociation plus duality model.
PART OF THE DIFFERENCE BETWEEN DEL PRODUCTION AT THE NEUTRON AND AT THE PROTON VERTICES COULD ARISE FROM DEUTERON EFFECTS.
The reaction K − d → K − π + π − n p s was studied in a bubble chamber experiment. The cross section was measured to be 1.3 ± 0.2 mb. The final state is dominated by K ∗0 (890) , K ∗0 (1420) and Δ − (1236) production. Partial cross sections, differential cross sections and decay angular distributions of the K ∗0 (890) δ − (1236) final state were found to give good agreement with the predictions of Białas and Zalewski obtained from the quark model. The final state K − π + Δ − (1236) is analyzed by use of the Van Hove plot.
DEUTERIUM CROSS SECTIONS WITH SPECTATOR PROTON. PROBABLY NOT CORRECTED FOR K* BRANCHING RATIO INTO <K- PI+>.
SLOPE IS 5.75 +- 0.46 GEV**2 FOR -TP < 0.4 GEV**2.
GOTTFRIED-JACKSON FRAME.
For the reaction γ p → K + Λ 0 the differential cross section has been measured at t = −0.147 GeV 2 ( θ C.M. = 26.5 ± 3.5°) and photoenergies between 1.05 and 2.2 GeV and for the reaction γ p→K + Σ 0 at ≈−0.17 GeV 2 ( θ C.M. = 28±3.5°) and photoenergies between 1.3 and 2.2 GeV. For this four momentum transfer the differential cross section of K + Λ 0 photoproduction has a surprising steep increase above threshold and stays nearly constant up to 2.2 GeV. The K + Σ 0 cross section increases from 1.3 to 1.56 GeV and goes down gradually at higher energies.
AT CONSTANT MOMENTUM TRANSFER OF -T = 0.147 GEV**2.
AT APPROXIMATELY CONSTANT MOMENTUM TRANSFER OF -T = 0.17 GEV**2.
Measurements have been made of the polarization of the recoil proton in the process γ p → π o p for photon energies of 850 - 1250 MeV and centre-of-mass angles of 80° - 125°. The results, which are to a typical accuracy of ±0.09, show a marked disagreement with previous phenomenological analyses above 1000 MeV.
No description provided.
No description provided.
No description provided.
The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.
No description provided.
RESONANCE REGION. UNSMEARING CORRECTION APPLIED, GLAUBER CORRECTION NEGLIGIBLE.
HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.