None
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c
No description provided.
No description provided.
No description provided.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
Measurements of wide angle elastic p-p scattering between 7 and 12 GeV/c are reported. Structure found in the angular distributions is suggestive of diffraction.
'1'.
'1'.
'1'.
The angular distribution of proton-proton elastic scattering has been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of laboratory scattering angles from 12 to about 140 mrad. The results are compared with the fourth power of the electromagnetic form of the proton.
No description provided.
A measurement of the proton-proton elastic differential cross section at 50 GeV/ c incident momentum in the momentum transfer range 0.8<| t |<4.0 (GeV/ c ) 2 is presented. The data are compared to pp data at lower and higher energies, and to some model predictions.
NUMERICAL VALUES OF DATA SUPPLIED BY D. IMRIE. ERROR CONTAINS BOTH STATISTICAL AND SYSTEMATICS EXCEPT THE OVERALL NORMALIZATION ERROR.
The differential cross-sections in the range of four momentum transfer squared from 0.003 to 0.120 (GeV c) 2 were measured at 30, 50 and 70 GeV by using a thin polyethilene target in the internal proton beam of the Serpukhov accelerator. The slope parameter, the ratio of the real to the imaginary part of the forward amplitude and the cross-section in the diffraction cone were measured.
No description provided.
ASSUMING UNIFORM SLOPE.
The total elastic p-p, p-d and p-n cross sections measured at the Serpukhov accelerator and Dubna synchrophasotron are presented in this paper.
SLOPE MEASURED FOR -T = 0.08 TO 0.12 GEV**2.
No description provided.
Proton-proton elastic scattering has been measured over the four-momentum transfer squared 0.0007 ⩽ t ⩽ 0.02 GeV 2 /c 2 . A gas hydrogen jet has been used as an internal target of the accelerator. The results indicate that the ratio of the real to the imaginary part of the proton-proton forward scattering amplitude rises smoothly with increasing energy from α = −0.35 ± 0.05 at p = 9.39 GeV/ c to α = −0.092 ± 0.011 at p = 69.8 GeV/ c .
THE TOTAL ELASTIC CROSS SECTION IS DERIVED FROM THE OPTICAL THEOREM POINT AND SLOPE PARAMETER.