Date

Electroweak Parameters From a High Statistics Neutrino Nucleon Scattering Experiment

Blondel, A. ; Bockmann, P. ; Burkhardt, .H. ; et al.
Z.Phys.C 45 (1990) 361-379, 1990.
Inspire Record 287166 DOI 10.17182/hepdata.15282

The final results from the WA 1/2 neutrino experiment in the 1984 CERN 160 GeV narrow band beam are presented. The ratiosRν and\(R_{\bar v} \) of neutral to charged current interaction rates of neutrinos and antineutrinos in iron are measured to beRν=0.3072±0.0033 and\(R_{\bar v} \)=0.382±0.016. A value of the electroweak parameter sin2 θw = 1 −mW2/mZ2 is extracted fromRν. The result is sin2 θw =0.228+0.013(mc−1.5)±0.0003 (theor.) wheremc is the mass of the charmed quark in GeV formt=60 GeV,MH=100 GeV, ρ=1. CombiningRν and\(R_{\bar v} \) one obtains a value for ρ=0.991+0.023(mc−1.5)±0.020(exp.). Alternatively,Rν and\(R_{\bar v} \) yield a precise value of the ratio of intermediate vector boson massesmW/mZ=0.880−0.007(mc−1.5)±0.002(exp.)±0.002(theor.). Comparison of these results with those from direct measurements of the vector boson masses are presented. In a model-independent analysis the left- and right-handed neutral current coupling constants,gL2 andgR2, are determined.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of the Differential Cross-sections of $e^+ e^- \to \gamma \gamma$ and $e^+ e^- \to \gamma \gamma \gamma$ at $\sqrt{s}=55$-{GeV}, 56-{GeV}, 56.5-{GeV} and 57-{GeV} and Search for Unstable Photino Pair Production

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Z.Phys.C 45 (1989) 175, 1989.
Inspire Record 280669 DOI 10.17182/hepdata.15298

Differential cross sections fore+e−→γγ have been measured at center-of-mass energies of 55, 56, 56.5 and 57 GeV. The results are in good agreement with those predicted by QED. Possible deviations from QED are studied in terms of contact interactions, and the limits on compositeness scales are obtained. Using events with a gramma pair in the final state, a search is made for the pair production of unstable photons,\(e^ +e^ -\to \tilde \gamma\tilde \gamma \). No candidate events were found and a new limit on the photino mass is obtained.

11 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron

Berge, J.P. ; Burkhardt, H. ; Dydak, F. ; et al.
Z.Phys.C 49 (1991) 187-224, 1991.
Inspire Record 281286 DOI 10.17182/hepdata.1696

A high-statistics measurement of the differential cross-sections for neutrino-iron scattering in the wide-band neutrino beam at the CERN SPS is presented. Nucleon structure functions are extracted and theirQ2 evolution is compared with the predictions of quantum chromodynamics.

40 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of Muon Neutrino Electron Elastic Scattering in the {Fermilab} 15-foot Bubble Chamber

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.D 40 (1989) 2753, 1989.
Inspire Record 281020 DOI 10.17182/hepdata.23078

A total of 22 muon-neutrino-electron elastic-scattering events (νμe→νμe) have been observed in an exposure of the Fermilab 15-foot bubble chamber filled with a heavy neon-hydrogen mixture to a wide-band neutrino beam. The elastic-scattering cross section is measured to be 1.67±0.44×10−42Eν cm2 GeV−1. The value of the weak mixing angle (sin2θW) determined from this cross section, which is consistent with other measurements of this angle, is 0.20−0.05+0.06.

1 data table

No description provided.


MEASUREMENTS OF THE CROSS-SECTION FOR e+ e- ---> gamma gamma at TRISTAN

The AMY collaboration Kim, H.J. ; Kang, J.S. ; Lee, M.H. ; et al.
KEK-Preprint-89-52, 1989.
Inspire Record 280029 DOI 10.17182/hepdata.38418

None

1 data table

No description provided.


Resonance Decomposition of the $D^*$0 (2420) Through a Decay Angular Analysis

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 232 (1989) 398-404, 1989.
Inspire Record 280943 DOI 10.17182/hepdata.45198

Using data collected with the ARGUS detector, we have performed a decay angular analysis of the enhancement, previously known as the D ∗ (2420), seen in the final state D ∗ (2010) + π − . We thereby exhibit that the observed broad structure is actually due to two relatively narrow resonances, one of which is identified as the D ∗ (2459) 0 , while the massof the other is measured to be (2414±2±5) MeV/ c 2 . The results of the analysis are in good agreement with the interpretation of the two states as L =1 D mesons of spin-parities 2 + and 1 + respectively.

2 data tables

The cross sections times branching ratio.

It is assumed that decays D PION and D* PION saturate the total widths.


High $p_T \gamma$ and $\pi^0$ Production, Inclusive and With a Recoil Hadronic Jet, in $p p$ Collisions at $\sqrt{s}=63$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Sov.J.Nucl.Phys. 51 (1990) 836-845, 1990.
Inspire Record 281284 DOI 10.17182/hepdata.48816

None

3 data tables

Errors are combined statistical and systematic.

Errors are combined statistical and systematic.

Errors are combined statistical and systematic.


Charge Asymmetry of Hadron Jets and Limits on the Compositeness Scales in e$^{+} $e$^{-} \To $q$ \Bar{$q$}$ Reaction at $\Sqrt{$s$}=57$.6-{GeV}

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 232 (1989) 425-430, 1989.
Inspire Record 281245 DOI 10.17182/hepdata.29751

A charge asymmetry has been measured in hadron jets from e + e − annihilation at energies between 52 and 61.4 geV (〈√ s 〉=57.6 GeV). The measured asymmetry is A =11.4%±2.2%±2.1% and is consistent with the prediction of the standard model of the electroweak theory. By using the differential cross section, lower limits of the compositeness scale in eeqq contact interactions have been determined to be typically a few TeV at 95% CL.

1 data table

Data are fully corrected for detector effects, resolution and radiative effects.


Measurements of the Nucleon Structure Function in the Range 0.002-GeV**2 < x < 0.17-GeV**2 and 0.2-GeV**2 < q**2 < 8-GeV**2 in Deuterium, Carbon and Calcium

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Nucl.Phys.B 333 (1990) 1-47, 1990.
Inspire Record 283347 DOI 10.17182/hepdata.33074

Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

33 data tables

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

More…

DEUTERON A(Q**2) STRUCTURE FUNCTION AND THE NEUTRON ELECTRIC FORM-FACTOR

Platchkov, S. ; Amroun, A. ; Auffret, S. ; et al.
Nucl.Phys.A 510 (1990) 740-758, 1990.
Inspire Record 292515 DOI 10.17182/hepdata.36877

We have measured the deuteron A ( Q 2 ) structure function in the momentum transfer region between 1 and 18 fm −2 . The accuracy of the data ranges from 2 to 6%. These measurements allow a sensitive test of theoretical predictions. We find that meson-exchange currents and relativistic corrections significantly improve the agreement between experiment and theory. We investigate the sensitivity of A ( Q 2 ) to the nucleon-nucleon interaction and to the neutron electric form factor G E n ( Q 2 ). Our analysis shows that G E n ( Q 2 ) can be extracted from these data with a significantly improved accuracy. The model dependence of this analysis is discussed.

4 data tables

Axis error includes +- 15/15 contribution.

Axis error includes +- 15/15 contribution.

Axis error includes +- 15/15 contribution.

More…