An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
None
No description provided.
Interacting protons.
At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The ratio of the exclusive production cross sections for φ and ω mesons has been measured in pp reactions at Tbeam=2.85GeV. The observed φ/ω ratio is (3.7±0.7−0.9+1.2)×10−3. After phase space corrections, this ratio is about a factor of 10 enhanced relative to naive predictions based upon the Okubo-Zweig-Iizuka rule, in comparison to an enhancement by a factor of ∼3 previously observed at higher energies. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the φ/ω ratio observed in specific channels of p¯p annihilation experiments.
No description provided.
The quasifree p+n→d+η reaction cross section has been measured at the threshold using 1295 MeV protons in the CELSIUS storage ring and an internal cluster-jet deuterium target. The kinematics is chosen such that the target proton can be assumed to be a spectator. The Fermi momentum of the target neutron is used to extract the energy dependence of the cross section by reconstructing the kinematics on an event-by-event basis. The data cover excess energies from threshold to 10 MeV in the center of mass of the final dη system. Approaching the threshold the cross section is enhanced compared to what is expected from phase space. This behavior is typical for a strong final-state interaction.
Cross section as a function of the C.M. excess energy.
The total cross section of the 4He(π+,π−) reaction was measured for π+ kinetic energies ranging from 70 to 130 MeV using the CHAOS spectrometer at TRIUMF and a liquid 4He target. Around Tπ=90MeV, total cross sections exceed conventional model predictions by a factor of 3, whereas at Tπ=70MeV and for Tπ>130MeV the data are consistent with these calculations. An attempt is made to understand this behavior by assuming the production of the hypothetical d′ dibaryon.
Double charge exchange reaction. section.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
A nonzero difference of the analyzing powers due to charge symmetry breaking has been measured with high precision in np elastic scattering at a neutron beam energy of 347 MeV. The neutron beam and proton target were alternately polarized for the measurements of An and Ap. A mirror-symmetric detection system was used to cancel geometry-related systematic errors. From fits of the measured asymmetry angular distributions over the range of 53.4°<~θcm<~86.9°, the difference in the zero-crossing angles of the analyzing powers was determined to be 0.438°±0.054°(stat.)±0.051°(syst.) in the center-of-mass system. Using the experimentally determined slope of the analyzing power dA/dθ=(−1.35±0.05)×10−2 deg−1 (c.m.), this is equivalent to ΔA≡An−Ap=[59±7(stat.)±7(syst.)±2(syst.)]×10−4. The shape of ΔA(θ) in the vicinity of the zero-crossing angle has also been extracted. Predictions of nucleon-nucleon interaction models based on meson exchange agree well with the results.
(C=N) or (C=P) stands for polarized beam or target.
We have studied the two reactions 12C(π+,pp) and 12C(π+,ppp) in one experiment, using the CHAOS spectrometer at TRIUMF, at incident pion energies of 200, 240, and 280 MeV. In both cases, we are able to distinguish between reaction mechanisms involving only the detected protons, and those in which additional nucleons must have participated, on the basis of missing momentum. In the case of 12C(π+,ppp), we identify events due to the two step process of π+p quasielastic scattering followed by two-nucleon absorption. Estimates are made for the total cross sections for the various absorption mechanisms.
The total observed cross sections are not corrected for limited experimental acceptance. No errors are given. The comments (C=MNKO), (C=2NP), and (C=GT2NP) stand for multy nucleon knockout, 2 nucleons participated, and more than 2 nucleons participated, respectively.