The first spin-transfer observables for the πd→pp reaction have been measured at a number of energies spanning the Δ resonance in this system. These parameters correspond to KSL and KSS of the pp→dπ reaction for incident proton energies ranging from 600 to 800 MeV. Such data can provide an important constraint on the determination of the partial-wave amplitudes describing this fundamental reaction. The discrepancies between our data, theoretical predictions, and values calculated from published partial-wave amplitudes demonstrate the need for further work in this area.
No description provided.
No description provided.
Absolute total and differential cross sections for the reaction π++d→p+p have been measured for pion energies from 3.7 to 20.5 MeV. Evidence for p-wave strength was observed for all energies. Using detailed balance and corrections for Coulomb effects, the measured differential and total cross sections were found to be consistent with recent measurements for the reaction n+p→d+π0, offering no evidence for charge-independence breaking. The measured total cross sections for energies below 30 MeV are in disagreement with predictions by Blankleider and by Vogelzang, Bakker, and Boersma.
No description provided.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.
No description provided.
The complete results of the experiments carried out with the Neutral Detector at the e + e − storage ring VEPP-2M in the energy range 2 E =0.5–1.4 GeV are reviewed. The data sample corresponds to a total integrated luminosity of 19 pb −1 .
ND results from Dolinsky et al., PL B174 (1986) 453.. Statistical errors only are shown. There is an additional systematic errorof 8%.
New ND data.. Statistical errors only are shown. There is an additional systematic errorof 8%.
Averaged ND data.. Statistical errors only are shown. There is an additional systematic errorof 8%.
The single-spin asymmetry $A_N(PP)$ for inclusive $\pi^0$ production at 0.5 < Pt< 2 GeV/c by 200-GeV transversely-polarized antiprotons on protons has been measured at Fermilab over a wide range of xp. We observe that AN (15P) has the same sign, a similar $x_F$ dependence, and about half the magnitude as $A_N(PP)$ for $\pi^0$ production by protons. We also present the ratio of the spin-averaged cross sections for $\pi^0$ production by antiprotons and by protons.
No description provided.
P P data are taken from Adams et al, Fermilab-Pub-91/13-E.
Ratio of the spin averaged invariant cross section for PI0 production in p p and pbar p interactions.
The spin asymmetryAN for inclusive π0 production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range ofxF, with 0.5<pT<2 GeV/c. AtxF>0.3, the asymmetry rises with increasingxF and reaches a value ofAN=0.15±0.03 in the region 0.6<xF<0.8. This result provides new input regarding the question of the internal spin structure of transversely-polarized protons.
No description provided.
False asymmetry calculated for events with average beam polarization of zero.
No description provided.
A measurement of the single-spin asymmetry A N in p↑ + p→ π 0 + X at 200 GeV with x F = 0 shows a transition in the production process from a “ low -x T ” regime with A N = 0, through an intermediate region of negative asymmetry, to a “ high -x T ” regime with A N > 0.3. This transition occurs at x T ≈ 0.4 and is consistent with x T -scaling of A N in pion production using polarized beams or targets from √− s =5.2 to 19.4 GeV. Results for A N in η production by polarized protons and in π 0 production by polarized antiprotons are also presented.
Statistical errors only.
Statistical errors only.
Statistical errors only.
A measurement of the QCD jet-broadening parameter 〈QT〉 is described for high-ET jet data in the central calorimeter of the Collider Detector at Fermilab. As an alternate approach to clustering analysis, this method involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter QT is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. Parton-level QCD predictions are made for 〈QT〉 as a function of ET, the total transverse energy in the events, and suggest that a measurement would show a dependence on the running of the strong coupling constant αs. Comparisons are made to first-order QCD parton-level calculations, as well as to fully evolved and hadronized leading-log simulations. The data are well described by the QCD predictions.
A small asymmetry in the systematic uncertainty has been ignored. Given here are the average values.
The excitation of theΔ resonance is observed in proton collisions on C, Nb and Pb targets at 0.8 and 1.6 GeV incident energies. The mass E0 and widthΓ of the resonance are determined from the invariant mass spectra of correlated (p, π±)-pairs in the final state of the collision: The mass E0 is smaller than that of the free resonance, however by comparing to intra-nuclear cascade calculations, this reduction is traced back to the effects of Fermi motion, NN scattering and pion reabsorption in nuclear matter.
WITHIN THE DETECTORS ACCEPTANCE RESULTS.
WITHIN THE DETECTORS ACCEPTANCE RESULTS.
WITHIN THE DETECTORS ACCEPTANCE RESULTS.
From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.