Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.
QUARK means QUARK or QUARKBAR.
None
Data at Parton level.
Ratio data/(Monte Carlo) at Parton level.
Data at Parton level.. Distribution of Ellis-Karliner angle.
A sample of 24 700 Ω− hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω− polarizations are found to be -0.054±0.019 and -0.149±0.055 at mean Ω− momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω− magnetic moment of -(1.94±0.17±0.14)μN
No description provided.
The reaction d+d→ α + π 0 which is in clear violation of charge symmetry conservation, has been observed for the first time at a laboratory energy of 1.10 GeV in an experiment carried out at the Saturne synchroton at Saclay. The number of π 0 's detected corresponds to a differential cross section d σ d Ω ∗ (π 0 ) = 0.97 ± 0.20 ± 0.15 pb/sr at a centre-of-mass angle of θ c . m . = 107°, where the first error bar refers to the statistical uncertainty and the second to the systematic. The reaction d+d→ α + γ was measured simultaneously with the π 0 production, leading to a differential cross section of d σ d Ω ∗ (γ) = 0.82±0.18±0.10 pb/sr at the slightly larger angle of θ c . m . = 110°. The available predictions of theoretical models of charge symmetry breaking, based upon η / π mixing, fall an order of magnitude below our measurement. However, these predictions for the η / π mixing level might be boosted by the η threshold (1.121 GeV) proximity, where this experiment is performed.
No description provided.
No description provided.
Intranuclear cascading mechanism one of the important non-linear effects in high energy nucleusnucleus collisions is investigated. The data on multiplicity (ns) and pseudorapidity (η) distributions of shower particles produced by32S and16O at 200A GeV,16O at 60A GeV,28Si at 14.5A GeV and He at ≈140A GeV are presented and compared with the string model VENUS, which takes into account the cascade interactions of secondary particles. The effect of the intranuclear collisions on the distributions of <η> versus <ns> is discussed for all the beams.
No description provided.
No description provided.
The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.
Statistical errors only.
No description provided.
No description provided.
We used nuclear track detectors to construct the trajectories of interactions and to measure with high resolution the charge of the beam and of heavy nuclear fragments produced in interactions. A null result of our search for fractional charge states in high-energy fragments with charges 8≤Z≤13 produced in collisions of 14.5A GeV Si28 nuclei with Pb and Cu targets leads us to conclude that the upper limits for the probability of production of a fragment with charge 23/3, 25/3, 26/3 28/3 29/3, 31/3 32/3, 34/3, 35/3, 37/3, or 38/3 charge unit in Pb and Cu at 90% confidence level are 1.9×10−4 and 3.9×10−4, respectively. We set a similar limit on the relative number of particle-stable fragments with 8≤Z≤14 created in the central rapidity region.
No description provided.
Multi-strange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We present the transverse mass distributions of negative particles, Λ' s , Λ ' s and Ξ − ' s produced in sulphur-tungsten interactions at 200 GeV/ c per nucleon and give the corrected rations Λ /Λ, Ξ − /Λ and Ξ − / Λ . Our ratio Ξ − / Λ appears to be larger than that from pp interactions.
Inverse slopes for different particle production.
Data from this and other WA85 publications.
Data from this and other WA85 publications.
The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.
Radiative effects are subtracted.
Radiative effects subtracted.
The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.
Axis error includes +- 0.0/0.0 contribution (?////).