The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.
Radiative effects are subtracted.
Radiative effects subtracted.
We have measured the Z-boson production differential cross section as a function of transverse momentum using Z→ee and Z→μμ decays in p¯p collision at √s =1.8 TeV with the Collider Detector at Fermilab. Comparison with standard-model predictions shows good agreement over the range 0<pT<160 GeV/c available from this data sample.
Errors are systematic and statistical combined, and are correlated bin to bin due to the correction for resolution smearing.
None
No description provided.
No description provided.
No description provided.
We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.
Corrected for radiative effects and acceptance.
Unfolded charged particle multiplicity distribution for continuum events.
Unfolded charged particle multiplicity distribution for UPSILON(4S) events.
We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .
No description provided.
This is the first measurement of the total cross section σ( 4 He (γ npp)n) in the range of 135–455 MeV. The σ, which cannot be reproduced by any model, has similar E γ dependence to γ T (γ 4 He → all channels). The averaged ratio σ( 4 He(γ, npp)n)/ σ T (γ 4 He → all channels) = (2.3 ± 0.3)% is compared with a cascade-model calculation in which quasi-free pion production followed by pion reabsorption is assumed.
No description provided.
None
No description provided.
None
THE SLOPE IS DETERMINED FROM THE FIT OF THE INVARIANT SPECTRUM (1/N)* (1/(2*3.14*PT))*D(N)/D(PT) BY A FORMULA MT*SUM(N=1,...) K1(N*SLOPE*MT), WHERE K1 IS MACDONALD FUNCTION.
A study is made of the rescattering phenomenon in deuterons by means of an analysis of ν/xxx;-d interactions in the WA25 (BEBC) experiment at CERN. Experimental data are presented on the rescattering fraction, its energy and multiplicity dependence, on the rapidity spectra of specific particles, on the multiplicity properties of rescatter interactions, and on strange-particle production. Rescattering offers an opportunity to study the behaviour of the produced particlein statu nascendi. The experimental phenomena are discussed in the framework of the formation time formalism. The proper time of hadronization τf is evaluated to be ∼0.5fm/c. A possible reduction of formation time in low-multiplicity events is discussed. Some differences between neutrino and hadron-induced rescattering in deuterons are attributed to the constituent quark structure of pions and nucleons. The experimental results are relevant for the issue of quark-gluon plasma formation in heavy-ion collisions.
ODD NUMBER OF HADRONS.
ODD NUMBER OF HADRONS.
ODD NUMBER OF HADRONS.
Parity-violating optical rotation induced by the neutral weak-current interaction has been detected and measured for the first time in atomic thallium vapour. Accurate atomic calculations predicting the size of the rotation are available for this element; thallium also benefits from the Z3 enhancement of the effect. The magnetic-dipole transition 6p1/2-6p3/2 at 1.283 μm was excited using a single-mode semiconductor laser and the small optical rotation was measured using a sensitive polarimeter. The result, expressed in terms of the quantity R = Im E1p.v./M1, is - 12.5(19)10-8 and is consistent with recent calculations based on the standard model.
Spin of the Tl nucleus is 1/2.