Differential cross sections for center of mass scattering angles near 90° are presented for the reactions K ̄ ° p → π + Λ° , K ̄ ° p → π + Σ° and K L °p → K S °p in the momentum interval 1.0 to 7.5 GeV / c . The energy dependences of these cross sections are found to be equally well described by the parameterization: ( d σ d Ω ) 90° ∞ s −2 or ( d σ d Ω ) 90° ∞ exp (− bp ⊥ ) .
No description provided.
No description provided.
No description provided.
Elastic diffraction scattering of π − , K − and p on protons has been measured at 25 and 40 GeV/c at the Serpukhov Proton Accelerator. Differential elastic cross sections and diffraction slopes are presented in the momentum-transfer interval 0.07–0.80 (GeV/ c ) 2 and compared with existing data at lower energies.
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
The elastic scattering of positive pions by deuterium has been studied using a scintillating target to detect the recoil deuteron. In addition to the angular distribution measured for 256 MeV incident energy, the energy variation of the fixed angle cross section ( θ lab =160°) has been determined between 141 MeV and 256 MeV. The former is in qualitative agreement with a simple multiple-scattering calculation, but the energy dependence is poorly reproduced.
'SMALL-ANGLE TECHNIQUE' - CALIBRATED AT THETA(RF=LAB) OF 30 DEG.
'SMALL-ANGLE TECHNIQUE' - CALIBRATED AT THETA(RF=LAB) OF 30 DEG.
'LARGE-ANGLE TECHNIQUE' - CALIBRATED AT EACH ANGLE.
The π − p differential elastic scattering cross sections have been measured for eight momenta in the 33–55 GeV/ c range. The energy dependence of the slope and of the total elastic scattering cross sections has been determined experimentally. The results are compared with the known data. The experimental data are compared both with the Regge pole model and with the quasi-potential one.
No description provided.
No description provided.
No description provided.
We report on an experiment to obtain differential cross sections for K+p elastic scattering in the vicinity of the possible exotic baryon, the Z1*(1900). The differential cross sections are based on typically 70 000 selected events in the angular region −0.9≤cosθc.m.≤0.9 at each of 22 momenta from 0.865 to 2.125 GeV/c. The data are intended for use in partial-wave analysis to search for the Z1*.
No description provided.
No description provided.
No description provided.
The neutron-proton differential cross section at 50.0 MeV has been measured to a precision of ≃ 2% for backward-hemisphere c.m. angles and ≃ 3% for forward angles, both relative. The present data are not in good agreement with the previous n−p measurements near this energy. A preliminary phase-shift analysis using the present data produces more satisfactory results, particularly for the P11 phase shift.
No description provided.
No description provided.
We have measured cross sections, rapidity and transverse momentum distributions, and vector meson polarization for the reactions pp→ ϱ o +anything, pp→ ω +charged particles, and pp → K ∗± + anything at incident laboratory momenta of 12 and 24 GeV/ c . We discuss various consequences of our results as well as possible connections with lepton pair production.
No description provided.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
Differential cross sections of neutral pion photoproduction on hydrogen were measured in the region between the first and the second nucleon resonance at photon energies of 400–500 MeV and were compared with results of an energy-independent multipole analysis.
No description provided.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.