This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.
No description provided.
No description provided.
No description provided.
The variation of the differential cross section for π+ photoproduction from hydrogen, with γ-ray energy, has been examined at a laboratory angle of 58° to the γ-ray beam. A thin hydrogen target, and a counter system designed to eliminate random events, have been employed. Mean values for the differential cross section dσdΩ at γ-ray energies of 162, 168, 175, and 192 Mev are 5.42±0.38, 5.77±0.41, 6.74±0.47, and 8.22±0.58 μb/sr, respectively, where the error limits refer to relative values. The results substantiate the rising trend of the interaction quantity {(dσdΩ)(μ2pε)(1+ωM)2} near threshold, in accord with dispersion theory; and the absolute cross sections are compatible with a threshold value for a0+ near 20 μb/ steradian, consistent with findings in related pion work.
No description provided.
The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.
No description provided.
None
No description provided.
No description provided.
The momentum spectra of protons scattered from carbon and deuterium at angles close to 60 mrad and for incident proton momenta between 12 and 27 Gev/c have been measured. The data show good agreement with calculations based on plural quasi-elastic proton-nucleon scattering within the nucleus.
No description provided.
No description provided.
Measurements have been made on 753 four-prong events obtained by exposing the Brookhaven National Laboratory 20-in. liquid hydrogen bubble chamber to 2.85-Bev protons. The partial cross sections observed for multiple meson production reactions are: pp+−(p+p→p+p+π++π−), 2.67±0.13; pn++−, 1.15±0.09; pp+−0, 0.74±0.07; d++−, 0.06±0.02; four or more meson production, 0.04±0.02, all in mb. Production of two mesons appears to occur mainly in peripheral collisions with relatively little momentum transfer. In cases of three-meson production, however, the protons are typically deflected at large angles and are more strongly degraded in energy. The 32, 32 pion-nucleon resonance dominates the interaction; there is some indication that one or both of the T=12, pion-nucleon resonances also play a part. The recently discovered resonance in a T=0, three-pion state appears to be present in the pp+−0 reaction. Results are compared with the predictions of the isobaric nucleon model of Sternheimer and Lindenbaum, and with the statistical model of Cerulus and Hagedorn. The cross section for the reaction π0+p→π++π−+p is derived using an expression from the one-pion exchange model of Drell.
No description provided.
We have measured the electron-proton scattering cross section at 248.9 Mev, 104.81°; 209.6 Mev, 149.75°; and 139.3 Mev, 104.19°. We find the following values: F1=0.767±0.025, F2=0.707±0.028, and F1F2=1.085±0.025 at −q2=2.98 f−2. F=0.902±0.011 at −q2=1.05 f−2. The last result agrees with previous measurements. The others are new contributions.
No description provided.
No description provided.