A detailed study of pion production in central Mg - Mg collisions at a momentum of 4.3 GeV/c per incident nucleon was carried out using the GIBS set-up. It has been shown that the dependence of the average kinematical characteristics ( and ) of mesons on multiplicity differs from that for NN collisions at the same energy, which is due to nuclear effects. The temperatures of mesons have been estimated using two different selection criteria: in the rapidity interval and at angles in the CMS. A satisfactory fit for mesons can be achieved by using a form involving two temperatures and . The relative yield of the high-temperature component is . The results obtained by the intranuclear cascade model CASIMIR coincide with the experimental data estimated with both methods. From the analysis of angular distributions of mesons the anisotropy coefficient a was obtained. The anisotropy coefficient increases linearly with the kinetic energy (in the CMS). CASIMIR reproduces the increase of a with , but the slope is less steep than from experimental results.
The average kinematical characteristics of the PI- production.
The mean YRAP and its dispersion in various PT intervals.
The charge distribution of multifragments of the 208 Pb beam at 160A GeV in nuclear emulsion has been fitted with a power-law. The moments of the resulting nuclear charged fragment distribution dis provide strong evidence that nuclear matter possesses critical point observables. The values of the critical exponents (γ, β and τ) extracted from the 208 Pb beam are compared with the values for the 197 Au beams at 10.6A GeV and 1A GeV. These values are very close to those for a liquid-gas system.
No description provided.
In explosive stellar hydrogen burning, the hot CNO cycles and the rp-process are mainly linked by the reaction sequence 15 O(α, γ) 19 Ne(p,γ) 20 Na. Using intense 19 Ne radioactive beams, both the 19 Ne(p,γ) and the 19 Ne(d,n) reaction have been studied. Upper and lower limits for the 19 Ne(p,γ) reaction rate have been deduced, allowing to conclude that the 15 O(α,γ) reaction is most likely the bottleneck reaction.
Two target were used: polyethylene foil (C=CH2) and static gas cell (C=H2).Two different detection set-ups have been designed: the Solid State Nuclear Tra ck Detector (C=SSNTD) method and the Solenoid and Telescope (C=STAR) method.
None
Nucleus is average light emulsion nuclei (C, NIT, O).
A study of the reactions p Xe → K + K + X , p Xe → K + H(H → Σ − p)X and p Xe → K + K + H(H → Σ − p)X was performed using the 700-litre xenon bubble chamber DIANA, exposed to the 1 GeV/ c antiproton beam of ITEP (Moscow). From a sample of 7.8 · 10 5 antiproton annihilations at low energy in xenon nuclei 4 events were observed for the reaction p Xe | → K + K + X at rest ( P p ≤ 400 MeV /c ) and 8 for the same reaction in flight ( 400 ≤ P p ≤ 900 MeV /c ). The corresponding probabilities turned out to be 3.1 · 10 −5 and 3.4 · 10 −5 , respectively. No H -event was found in the two semi-inclusive reactions p Xe → K + HX and p Xe → K + K + HX . This lead to the upper limits 6 · 10 −6 and 8 · 10 −6 (90% C.L.), respectively. The corresponding upper limit for the fully inclusive reaction p Xe → HX turned out to be 1.2 · 10 −5 (90% C.L.), which is about one order of magnitude lower than the actual value reported in the literature.
No description provided.
Total and differential cross sections for photoproduction of η mesons from 12 C, 40 Ca, 93 Nb, and nat Pb have been obtained up to 790 MeV incident photon energy at the Mainz Microtron (MAMI) with the TAPS spectrometer. The absorption cross section σ ηN abs = (30 ± 2.5 ± 6)mb of η mesons in nuclear matter and the absorption length λ η = (2.0 ± 0.2 ± 0.4) fm are extracted. No significant depletion of the S 11 (1535) strength in the η photoproduction on nuclei is observed.
THE TOTAL SIG WAS PARAMETRIZED BY A**POWER.
Differential cross sections for p p elastic scattering have been measured for very small momentum transfers at six different incident antiproton momenta in the range 3.7 to 6.2 GeV/c by the detection of recoil protons at scattering angles close to 90°. Forward scattering parameters σ T , b , and ϱ have been determined. For the ϱ-parameter, up to an order of magnitude higher level of precision has been achieved compared to that in earlier experiments. It is found that existing dispersion theory predictions are in disagreement with our results for the ϱ-parameter.
Results of the SIG(T)-free analysis. Errors include systematic uncertainties.
Results of the SIG(T)-fixed analysis. Errors include systematic uncertainties.
CT values of the total cross section from the SIG(T)-free analysis. Errors include systematic uncertainties.
A search for direct electron pairs was performed at the 6.4 TeV 32 S emulsion interactions at CERN. A total of 81 directly produced electron pairs have been observed, with an average number per interaction of about two. The results have been analysed in the light of the predictions of quantum electrodynamical calculations. A simple interpretation for the extracted results based on the virtual mass distribution is presented. The experimental results are in partial agreement with the present theories. The virtual mass distribution does not show a 1/m behaviour.
No description provided.
No description provided.
The pp → ppη reaction has been measured at six energies close to threshold, from 1258 MeV to 1352 MeV, using an internal cluster gas jet target in the CELSIUS storage ring. The η is detected through its decay photons, in an array of CsI detectors, and the forward-going protons are detected in a plastic scintillator spectrometer. A complete event reconstruction is obtained at the higher energies in the measured interval. The new data, together with earlier data, give an accurate determination of the energy dependence close to threshold. The influence of the η-proton FSI is seen in the total cross section data as well as in a Dalitz plot of the η-p invariant mass distributions.
No description provided.
The probability of deuteron formation resulting from the interaction of high energy protons with nucleons, light nuclei (CNO) and heavy nuclei (Ag, Br) is discussed. The proportionality of the identified deuterons and protons (produced at the same angle due to the same interaction) agrees with that of the Butler and Pearson model which owes the deuteron formation to the average nuclear interaction seen by the cascade nucleons within the nucleus and then the normal n-p interaction. The data are based on the momentum and angular distributions of the outgoing particles.
No description provided.