In this paper we present the π + p differential elastic scattering cross sections at five momenta between 0.6 and 0.8 GeV/ c . The data were collected in a bubble chamber exposure and consequently are susceptible to different systematic errors from counter experiments. Our results are generally in good agreement with those of counter experiments in the same momentum range and with the predictions of the various elastic partial wave analyses. The majority of partial wave analyses do not however yield parameters which fit our data in detail without modification.
No description provided.
No description provided.
No description provided.
Measurements of elastic proton-proton differential cross sections for angles between 65° and 90° c.m.s. have been made at 8, 9, 10, 11, 14, 15 and 21 GeV/c. The shape of the angular distribution is found to change suddenly between 8 and 11 GeV/c. An interpretation of this discontinuous behaviour in terms of the reactive effects of baryon-antibaryon pair production is proposed.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The energy dependence of the differential cross section for $\pi^+ p$ elastic scattering at a c.m. angle near 174 ° has been measured. The momentum range of incident $\pi^+$ was 2.06-4.70 GeV/c. On this energy dependence one can see a structure, i.e. maxima corresponding to the baryon resonances $\Delta(2420)$ and $\Delta(2840)$. The structure is used for determination of the parities of these resonances.
No description provided.
No description provided.
No description provided.
The final state K − pn has been analyzed in a K − deuterium bubble chamber experiment at K − momenta between 680 and 840 MeV/ c . Differential cross sections for elastic K − p and K − n scattering in the c.m. energy range of 1.60–1.74 GeV are presented. The results for K − p→K − p agree well with existing data obtained with hydrogen targets. The results for K − n→K − n are lower but still compatible with recent measurements from a counter experiment.
PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.
PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.
The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
We have measured elastic pion-proton scattering in a 50 GeV/ c π − beam at the 76 GeV proton synchrotron in Serpukhov. Data are presented for four-momenta transfer squared in the range 0.03 < t < 0.4 (GeV/ c ) 2 .
SLOPE IS 9.1, +0.2, -0.4 GEV**-2 (INCLUDING SYSTEMATIC ERRORS).
The angular distribution of π + p elastic scattering has been measured at an incident momentum of 10 GeV/ c . Nearly the whole angular range was covered in one experimental set-up. The pronounced dip at − t = 2.8 (GeV/ c ) 2 , observed at lower momenta, has diminished and is essentially a shoulder at 10 GeV/ c . The other structure at larger momentum transfers are also different in detail from what we observed at 5 GeV/ c . In the 90° c.m. region the differential cross-section is approximately one nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c .
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
Twenty-nine proton-proton differential elastic cross sections for lab momenta p0 from 11 to 31.8 BeV/c, at four-momentum transfers squared, −t, from 2.3 to 24.4 (BeV/c)2, have been measured at the Brookhaven alternating gradient synchrotron. The circulating proton beam impinged upon a thin CH2 internal target. Both scattered protons from p−p elastic events were detected by scintillation-counter telescopes which were placed downstream from deflection magnets set at the appropriate angles to the incident beam. The angular correlation of the protons, their momenta, and the coplanarity of the events were determined by the detection system. The results show that at high momentum transfers the differential cross section, dσdt, depends strongly upon the energy; for −t=10 (BeV/c)2, the value of dσdt at p0=30 BeV/c is smaller by a factor∼1000 than at p0=10 BeV/c. At all energies, dσdt falls rapidly with increasing |t| for scattering angles up to about 65° (c.m.), while in the range from 65 to 90° the cross section falls only by a factor of about 2. The smallest cross section measured was 9×10−37 cm2 sr−1 (c.m.), at p0=31.8 BeV/c and −t=20.4 (BeV/c)2; this is about 3×10−12 of the zero-degree cross section at the same energy.
'1'. '2'.
We have measured the differential cross section for π − p elastic scattering at eight incident momenta, 2.06, 2.26, 2.45, 2.65, 2.86, 3.05, 3.26 and 3.48 GeV/ c , in a wide range of c.m. scattering angle between 15° and 160°. A pronounced dip-bump structure has been found at large angles. Details of the structure are quantitatively described as functions of the incident momentum.
No description provided.
No description provided.
No description provided.