We have studied open charm production in $\gamma \gamma$ collisions with the TOPAZ detector at the TRISTAN $e~{+}e~{-}$ collider. In this study, charm quarks were identified by electrons (and positrons) from semi-leptonic decays of charmed hadrons. The data corresponded to an integrated luminosity of 95.3 pb$~{-1}$ at a center-of-mass energy of 58 GeV. The results are presented as the cross sections of inclusive electron production in $\gamma \gamma$ collisions with an anti-tag condition, as well as the subprocess cross sections, which correspond to resolved-photon processes. The latter were measured by using a sub-sample with remnant jets. A comparison with various theoretical predictions based on direct and resolved-photon processes showed that our data prefer that with relatively large gluon contents in a photon at small $x (x \le 0.1)$, with the next-to-leading order correction, and with a charm-quark mass of 1.3 GeV.
The description of events with anti-tag, remnant-jet-tag, and no-tag are presnted in text.
.
This paper reports the measurement of the B meson and b quark cross sections through the decay chain B0→J/ψ K*(892)0, J/ψ→μ+μ−, K*(892)0→K+π−, using 4.3 pb−1 of data collected at the Collider Detector at Fermilab in p¯p collisions at qrts=1.8 TeV. We obtain σB=1.5±0.7(stat)±0.6(syst) μb for B0 mesons with transverse momentum PT>9.0 GeV/c and rapidity ‖y‖<1.0. Using this result, we find σb=3.7±1.6(stat)±1.5(syst) μb for b quarks with PT>11.5 GeV/c and rapidity ‖y‖<1.0. The b quark cross section is compared to next-to-leading order QCD calculations and previous measurements.
B0 meson cross section.
Bquark cross section.
The total hadronic cross section in e + e − annihilation was measured at s =5.77 GeV to be σ h = 143.6 ± 1.5 (stat) ± 3.5 (sys) pb with only the QED corrections. The measurement was based on data corresponding to an integrated luminosity of 90.8 pb −1 accumulated by the TOPAZ detector at TRISTAN. Our data point put stringent constraints on the size of the γ - Z 0 interference and the Z 0 mass. Combining our data with the OPAL data at LEP, we obtained the coefficient of the interference and the Z 0 mass to be J had = 0.10 ± 0.26 and M z = 91.151 ± 0.008 GeV, respectively, in a model-independent analysis.
Total hadronic cross section after QED corrections.
Using data collected by the CLEO II detector, we have observed two states decaying to Λc+π+π−. Relative to the Λc+, their mass splittings are measured to be +307.5±0.4±1.0 and +342.2±0.2±0.5MeV/c2, respectively; this represents the first measurement of the less massive state. These two states are consistent with being orbitally excited, isospin zero Λc+ states.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugated states are understood.
Charged conjugated states are understood.
Charged conjugated states are understood.
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.
Determination of ALP_S(MZ**2). Error contains both statistics and systematics.
Using a silicon-microstrip detector array to identify secondary vertices, we have observed b→J/ψ→μ+μ− decays in 800GeV/c proton-gold interactions. The doubly differential cross section for J/ψ mesons originating from b-quark decays, assuming linear dependence on nucleon number, is d2σ/dxFdpT2=107±28±19[pb/(GeV/c)2]/nucleon at xF=0.05 and pT=1GeV/c. This measurement is compared to next-to-leading-order QCD predictions. The integrated b-quark production cross section, obtained by extrapolation over all xF and pT, is σ(pN→bb¯+X)=5.7±1.5±1.3 nb/nucleon.
All J/PSI(1S) are from B/BBAR decays. Cross section per nucleon was obtained with linear A-dependence.
Cross section per nucleon was obtained with linear A-dependence.
All J/PSI(1S) are from B/BBAR decays. Cross section per nucleon was obtained with linear A-dependence. Extrapolation in the XL=0.05 and PT=1 GEV bin.
We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
No description provided.
We present a precise measurement of the left-right cross section asymmetry ( A LR ) for Z boson production by e + e − collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0±1.1)%. Using a sample of 49,392 Z decays, we measure A LR to be 0.1628±0.0071(stat.)±0.0028(syst.) which determines the effective weak mixing angle to be sin 2 θ W f eff = 0.2292 ± 0.0009(stat.) ± 0.0004(syst.).
R and L refer to Right and Left handed electron beam polarization. ASYM is defined as follows : ASYM = ((SIG(C=L)-SIG(C=R))/(SIG(C=L)+SIG(C=R)).
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.