The differential p p → n n charge-exchange cross section has been measured at the CERN Low Energy Antiproton Ring (LEAR), at two incident p momenta, 601 and 1202 MeV/c. features of the differential cross-section near the forward direction, i.e. a sharp peak at 0° scattering angle followed by an energy dependent dip-bump structure, are confirmed and measured with good precision and high statistical accuracy. The data show very clearly that the shape of the cross-section is a manifestation of the pion-exchange amplitude, and a simple extrapolation to the pion pole already indicates that the pion-nucleon coupling constant f c 2 can be determined with good precision.
No description provided.
Corrected with data from PL B405,389.
We present the first measurement of the left-right asymmetry in Bhabha scattering with a polarized electron beam. The effective electron vector and axial vector couplings to the Z0 are extracted from a combined analysis of the polarized Bhabha scattering data and the left-right asymmetry previously published by this collaboration.
No description provided.
The tensor analyzing power T20 for the reaction d↑+12C→p(0°)+X has been measured in the region of proton internal momenta k in light-cone dynamics up to 1 GeV/ c. Measurements have been carried out at Dubna Synchrophasotron with polarized deuteron beam at deuteron momenta up to 9 GeV/ c. When k increases the experimental values of T20 have a tendency to approach the value ( −0.3) obtained by the calculation based on the reduced nuclear amplitude method in which the quark degrees of freedom are taken into account.
The momentum K, called momentum in light-cone dynamics, is expressed by thefollowing formula k**2=mt**2/(4*alpha*(1-alpha))-m**2,with mt**2=kt**2+m**2 wh ere kt is the proton transverse momentum.The light-cone variable alpha is the p art of the deuteron momentum carried by the proton in the infinite momentum frameand is expressed by the formula alpha=(Ep+Pp)/(Ed+Pd).
The transverse-longitudinal asymmetry ATL′ in He→3(e→, e′) quasielastic scattering at momentum transfer Q2=0.14 (GeV/c)2 has been measured to be 1.52 ± 0.55(stat) ± 0.15(syst)%. The plane wave impulse approximation (PWIA) prediction for this measurement ranges from 2.1% to 2.9%, where the variation is due to uncertainty in the initial state wave function, nucleon form factors, and off-shell prescription. The data may suggest a suppression with respect to the PWIA, which has also been observed for the unpolarized longitudinal response function.
QUASIELASTIC REACTION.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
Using the CLEO II detector at CESR, we have observed two charmed states, where the higher mass state decays to D 0 π + and to D ∗0 π + , while the lower mass state decays to D ∗0 π + , but not to D 0 π + . The masses and widths were measured to be 2425±2±2 MeV/c 2 and 26 −7−4 +8+4 MeV/c 2 for the lower mass state, and 2463±3±3 MeV/c 2 and 27 −8−5 +11+5 MeV/c 2 for the higher mass state. Properties of these states, including their decay angular distributions and spin-parity assignments have been studied. The results of this analysis support the identification of these states as the charged L = 1 D 1 (2420) + and D 2 ∗ (2460) + , respectively. The isospin mass splittings between these states and their neutral partners have also been measured. This is the first full reconstruction of any decay mode of the D 1 (2420) + and the first observation of the decay of D 2 ∗ (2460) + to D ∗0 π + .
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugate states are undestood.
Exclusive ϱ 0 and φ muoproduction on deuterium, carbon and calcium has been studied in the kinematic range 2< Q 2 < 25 GeV 2 and 40 < ν < 180GeV. We discuss the Q 2 dependence of the cross sections, the transverse momentum distributions for the vector mesons, the decay angular distributions and, in the case of the ϱ 0 , nuclear effects. The data for 0 production are compatible with a diffractive mechanism. The distinct features of φ production are a smaller cross section and less steep p t 2 distributions than those for the 0 mesons.
No description provided.
No description provided.
No description provided.
The production of B ∗ mesons in Z decays has been measured at LEP with the L3 detector. A sample of Z → b b events was obtained by tagging muons in 1.6 million hadronic Z decays collected in 1991, 1992 and 1993. A signal with a peak value of E γ = 46.3 ± 1.9 (stat) MeV in the B rest frame energy spectrum was interpreted to come from the decay B ∗ → γB. The inclusive production ratio of B ∗ mesons relative to B mesons was determined from a fit to the spectrum to be N B ∗ (N B ∗ + N B ) = 0.76 ± 0.08 ± 0.06 , where the first error is statistical and the second is systematic.
No description provided.
No description provided.
No description provided.
Ψ′ and J/Ψ yields are compared in p-W, p-U and S-U interactions at 200 GeV/nucleon. Their ratio decreases from proton-t to sulphur-induced reactions. It also decreases in sulphur-induced reactions from peripheral to central collisions. This result could indicate that the Ψ′ and J/Ψ suppression mechanisms have different origins in p- and S-induced reactions.
No description provided.
No description provided.
No description provided.