A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.
None
THE CROSS SECTION HAS BEEN FITTED BY THE FORMULA: D(SIG)/D(PT**2)= CONST*EXP(-SLOPE*PT**2).
We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.
No description provided.
Nucleon spin structure function g2.
Proton total reaction cross sections (σR) have been measured for the nuclei Ca42, Ca44, and Ca48 at seven energies each between 20.8 and 48.0 MeV. The experimental results plus our previously measured σR values for Ca40 are compared to the results of optical model analyses, both nonrelativistic and relativistic, of an extensive set of elastic scattering data for the same calcium isotopes in this energy range. The experimental results are also compared to global optical model predictions. In general, the theoretical values are in good agreement with the experimental results, with a slight preference for the relativistic analysis. In addition, our results are used in nuclear transparency calculations, which show that over the range of energies studied, the average nuclear transparency decreases by almost 15%.
No description provided.
No description provided.
This paper presents a measurement of J/psi,psi(2S) differential cross sections in p-pbar collisions at square root s = 1.8 TeV. The cross sections are measured above 4 GeV/c in the central region (|eta| < 0.6) using the dimuon decay channel. The fraction of events from B decays is measured, and used to calculate b quark cross sections and direct J/psi,psi(2S) cross sections. The direct cross sections are found to be more than an order of magnitude above theoretical expectations.
Cross sections are multiplied on branching ratio of J/PSI or PSI(2S), respectively.
The cross sections was evaluated form the J/PSI spectrum. The error is statistical and systematic errors, added in quadrature.
The cross sections was evaluated form the PSI(2S) spectrum. The error is statistical and systematic errors, added in quadrature.
None
Charged B+ or B- meson cross section.
Charged B+ or B- meson cross section.
Neutral B0 or BBAR0 meson cross section.
None
No description provided.
No description provided.
No description provided.
The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.
Cross section measurement.
Proton form-factor measurement.
The polarization of Lambda0, AntiLambda0, Sigma+ and Xi- inclusively produced in Sigma- induced interactions at 330 GeV has been measured in the experiment WA89 at CERN. This is the first measurement of polarization of baryons produced by a hyperon beam. No polarization of AntiLambda is observed, as was also the case in proton beam data. At transverse momenta of about 1GeV/c Lambda0 and Sigma+ show little polarization, significantly lower than in the proton beam data, while Xi- have a polarization comparable to the polarization of Lambda0 produced in proton beams.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.
Lowest order cross section and forward-backward asymmetry.
Errors are statistical only.
Lowest order cross section and forward-backward asymmetry.