Using a sample of about 1.46 million hadronic Z decays collected between 1991 and 1993 with the ALEPH detector at LEP, the energy distribution of the B 0 and B ± mesons produced at the Z resonance is measured by reconstructing semileptonic decays B → ℓ ν ℓ D(X) or B → ℓν ℓ D ∗+ (X) . The charmed mesons are reconstructed through the decay modes D 0 → K − π + , D 0 → K − π + π − π + , D + → K − π + π + and D ∗+ → D 0 π + . The neutrino energy is estimated from the missing energy in the lepton hemisphere. Accounting for B ∗ and B ∗∗ production, the shape of the scaled energy distribution x E (b) for mesons containing a b quark is compared to the predictions of different fragmentation models. The mean value of x E (b) is found to be 〈 x E (b) 〉 = 0.715 ± 0.007(stat) ± 0.013(syst).
SIG/SIG(C=ALL-X-INTERVAL) is fraction of events in bin. Third and fourth systematic errors are due to variation of D** and B** contributions respectively (model dependent, see text).
The production of Δ ++ baryons has been measured using 3.5 million hadronic Z 0 decays collected with the OPAL detector at LEP. The production rate and fragmentation function are presented. A total of 0.22 ± 0.04 ± 0.04 Δ ++ + ( Δ ) −− per hadronic Z 0 decay is observed. The fragmentation function is found to be softer than that predicted by the JETSET and HERWIG Monte Carlo event generators. With this measurement of Δ ++ production, at least one baryon of each strangeness level in the lightest baryon decuplet has now been measured at LEP.
No description provided.
Rates for gamma + 1 jet.
Rates for gamma + 2 jet.
Rates for gamma + 3 jet.
A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
Data on the inclusive production of the neutral vector mesonsρ 0(770),ω(782), K*0(892), andφ(1020) in hadronic Z decays recorded with the ALEPH detector at LEP are presented and compared to Monte Carlo model predictions. Bose-Einstein effects are found to be important in extracting a reliable value for theρ 0 production rate. An averageρ 0 multiplicity of 1.45±0.21 per event is obtained. Theω is detected via its three pion decay modeω→π + π − π 0 and has a total rate of 1.07±0.14 per event. The multiplicity of the K*0 is 0.83±0.09, whilst that of theφ is 0.122±0.009, both measured using their charged decay modes. The measurements provide information on the relative production rates of vector and pseudoscalar mesons, as well as on the relative probabilities for the production of hadrons containing u, d, and s quarks.
No description provided.
Average multiplicity per hadronic event. Extrapolation to the full X range.
No description provided.
A preliminary analysis of exclusive $\btou$ decays to the final states $\pi~\pm\ell\nu$, $\pi~0\ell\nu$, $\rho~\pm\ell\nu$, $\rho~0\ell\nu$\ and $\omega\ell\nu$ based on $2.2\e{6}$ $\bbar$ decays collected at CLEO is presented. We have measured the first exclusive $\btou$ branching fraction $\bbpi=[1.19\pm0.41\pm0.21\pm0.19]\e{-4}$ ($[1.70\pm0.51\pm0.31\pm0.27]\e{-4}$), with the ISGW (WSB) model used for efficiency determination. A 90\% C.L. upper limit on $\bbrho$ similar to the previous CLEO limit is obtained. The ratio $\gamrho/\gampi<3.4$ at the 90\% confidence level for both the ISGW and WSB models. This ratio provides some discrimination between form factor models.
.
The statistical and systematic uncertainties have been combined in quadrature.. 90% CL.
Both ISGW and WSB models, 90% CL. The statistical and systematic uncertainties have been combined in quadrature.
None
Upper limit at the 95% C.L.
The angles at which the n-p elastic scattering neutron analyzing power A00n0 crosses zero were measured with precision at four TRIUMF energies below 300 MeV. The mean interaction energies are also measured with greater precision than in previous experiments. The results are En=175.26±0.23 MeV, θzx=98.48°±0.28°; En=203.15±0.20 MeV, θzx=91.31°±0.18°; En=217.24±0.19 MeV, θzx=87.64°±0.18°; and En=261.00±0.16 MeV, θzx=80.18°±0.19°. After correction for charge symmetry breaking effects, the energy where the averaged neutron-proton analyzing power crosses zero at θzx=90° is found to be En=206.8±0.6 MeV. © 1996 The American Physical Society.
Polarized beam and target.
Polarized beam and target.
Polarized beam and target.
Angular distributions for photon scattering from C12 and He4 have been measured using continuous wave bremsstrahlung from the Saskatchewan Accelerator Laboratory pulse stretcher ring. Data for carbon were taken at 158.8, 195.2, 197.2, 247.2, and 290.2 MeV end-point energies, and for helium were taken at an end-point energy of 158.8 MeV. A large NaI(Tl) gamma ray spectrometer with 1.7% resolution was used to detect the scattered photons at laboratory scattering angles ranging from 20° to 150°. The excellent energy resolution of the NaI detector allowed a separation of elastic from inelastic photon scattering for the first time at these energies. The angular distributions for elastic scattering are in only fair agreement with delta-hole theory and theory based on the optical theorem at forward angles, and completely disagree with theory at backward angles. Measured cross sections for inelastic scattering leading to the 4.43 MeV state in carbon are small compared to the elastic scattering at forward angles, but are dominant at backward angles. This experiment is the first to separate elastic from inelastic photon scattering at these energies.
ROI=4.43 MEV.
ROI=4.43 MEV.
ROI=4.43 MEV.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.