Polycarbonate track detector Makrofol, sensitive to fragments withA≧16 was used to register products of interactions of 6.3 GeV deuterons with Th, Bi, Au, and Ag. Cross sections for the production of events with one, two and three fragments have been determined and their variation as a function of theZ2/A of the target analyzed. Possible mechanisms were proposed and discussed. Geometric characteristics of binary events were used in order to identify those binary events which resulted from the process of fission. The results were compared with corresponding proton data.
Cross sections for the production of events with one, two and three fragments have been determined.
The subthreshold production of neutral pions was studied in the reactions 24 Mg(α,π 0 )X at 43 MeV·. A and 24 Mg( 16 O,π 0 )X at 24 and 33 MeV·. A . The energies and emission angles of the two coincident photons from the π 0 -decay were measured with a lead glass shower detector. The cross sections of 3.5 and 6.6 nb from the 16 O-induced reactions are compatible with other experiments in this energy region. For the α-induced reaction a production cross section of 1.3 nb was found. Here, only 22 MeV above the absolute threshold, the pion emission from an excited Δ -nucleon hole state is strongly suppressed. The differential cross sections at very backward angles are by an order of magnitude bigger than the yields at 90° pointing to a strong absorption of the produced pions by the larger target nucleus.
No description provided.
Antinucleon-nucleus annihilations into two-body final states containing only one or no meson are unusual annihilations (Pontecorvo reactions), practically unexplored experimentally, with the exception of the channel p d → π − p , for which only two low-statistics measurements exist. Their physical interest lies in the possibility of exploring small-distance nuclear dynamics, in which an important role can be played by non-nucleonic degrees of freedom. A new measurement of the p d → π − p reaction rate at rest, performed with the OBELIX spectrometer at LEAR, with the best statistics up to now and a careful evaluation of systematic effects is reported, together with a critical analysis of the existing theoretical models. The measured branching ratio, which confirms the previous results, can represent a reference point for the studies in the field.
No description provided.
The differential cross section for n-p elastic scattering at 459 MeV in the c.m. angular region 50°<θ*<180° has been measured with high statistical precision and good relative accuracy. The uncertainty in the absolute normalization (based on the simultaneously measured yield of deuterons from the np→dπ0 reaction) was initially estimated to be ∼7%. The results agree well with back-angle data obtained independently at LAMPF but less well with results from Saclay and the Princeton-Pennsylvania Accelerator and, except for a normalization difference of 10%, are fairly well represented by a phase-shift fit. The pole-extrapolation method of Chew was used to extract the pion-nucleon coupling constant f2 from the back-angle portion of the data. The value obtained, f2=0.069, is somewhat smaller than the values 0.0735–0.0790 obtained from analyses of pion-nucleon scattering, tending to confirm the need for an upward renormalization of the angular distribution by ∼10%.
No description provided.
It is shown that in interactions of protons at 200, 300, and 400 GeV, and negative pions at 300 GeV with emulsion nuclei, the scaling of the multiplicity of relativistic charged secondaries is valid and described by a linear function of the scaling variable, z.
No description provided.
No description provided.
Absolute pp-elastic-differential cross sections were measured at incident energies 492, 576, 642, 728, and 793 MeV from about 30° to 90° c.m. The total uncertainty was determined to be less than 1%, made possible by particle counting for beam normalization and extensive cross-checks of systematic effects. These new data are consistent with previous data above 600 MeV but have uncertainties about a factor of 10 smaller. Near 500 MeV these data are consistent with 90° data from TRIUMF, but differ significantly from similar data from PSI; the cause of this discrepancy is discussed.
No description provided.
No description provided.
No description provided.
The differential cross section for the reaction H2(γ,p)n has been measured at several center-of-mass angles ranging from 50° to 143° for photon energies between 0.8 and 1.8 GeV. The experiment was performed at the SLAC-NPAS facility with the use of the 1.6 GeV/c spectrometer to detect the high energy protons produced by a bremsstrahlung beam directed at a liquid deuterium target. Contributions from concurrent disintegration by the residual electron beam were determined by measuring the proton yield without the Cu photon radiator. At angles not very far from 90°, the energy dependence of the cross sections is consistent with predictions of scaling using counting rules for constituent quarks. At least one theoretical calculation based on a meson-baryon picture of the reaction is able to reproduce the magnitude and energy dependence of the 90° cross section. The angular distribution exhibits a large enhancement at backward angles at the higher energies.
THE QUOTED ERRORS ARE STATISTICAL ONLY.
Absolute π±d differential cross sections and charge asymmetries have been measured at incident pion energies of 30 and 50 MeV, using an active target of scintillator plastic to detect recoil deuterons in coincidence with scattered pions. In addition, a small set of data at 65 MeV was collected for comparision with the results of an earlier experiment performed by this group. Measurements at 50 MeV from the earlier experiment are compared with the results of the present experiment.
No description provided.
No description provided.
No description provided.
The results of intranuclear cascade calculations (ideal gas with two-body collisions and no mean field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments (d, t, He3, and He4) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using a large solid angle detector. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow, the best agreement being reached for Z=2 nuclear fragments. Nevertheless these comparisons are encouraging for further improvements of the model. Moreover, such an approach is easy to extend to any other models that could calculate the nucleon phase space distribution after the compression stage of the reaction, when light nuclear fragments emitted at large angles are constructed from percolation.
No description provided.
No description provided.
The fragmentation of 1.2 GeV per nucleon La139 nuclei has been studied. Total charge changing cross sections for H (CH2-C), C, and Pb target nuclei, and elemental production cross sections for C and CH2 targets for 1≤ΔZ≤30 have been measured. For heavy projectile fragments, the projected transverse momenta extracted are generally larger than predicted by models based on the internal momenta of nucleons in nuclei. Fits to the heavy fragment momentum distributions yield additional transverse momenta or ‘‘bounce-off’’ which range from ≃500 to 1000 MeV/c.
No description provided.