The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
No description provided.
We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.
Determination of alpha_s.
Multiplicity and high moments.
Tmajor distribution.
None
Inclusive charged particle distribution as a function of XP.
Inclusive charged particle distribution as a function of rapidity (YRAP).
Inclusive charged particle distribution as a function of PT in the event plane.
Cross-sections and angular distributions for the production of events with single and multiple photons are measured from data recorded with the OPAL detector at the recently upgraded LEP collider. The measured cross-sections are generally consistent with Standard Model expectations for the e + e − → ν v γ(γ) and e + e − → γγ ( γ ) processes. Six events with an acoplanar photon pair and large missing mass are found. The observed number of events is larger than expected from e + e − → ν ν γγ ; however, the missing mass distribution is compatible with the Z 0 resonance. Deviations from QED are constrained by the data on e + e − → γγ ( γ ). Lower limits are set at 95% confidence level on the QED cut-off parameters Λ + and Λ − of 152 GeV and 142 GeV, respectively, and also on the mass of an excited electron of 147 GeV.
No description provided.
No description provided.
No description provided.
A lower limit on the oscillation frequency of the B s 0 B s 0 system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign D s − candidates reconstructed in seven different decay modes as evidence of semileptonic B s 0 decays. Criteria designed to ensure precise proper time reconstruction select 277D s − ℓ + combinations. The initial state of these B s 0 candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95% confidence level on the B s 0 B s 0 oscillation frequency is Δm s > 6.6 ps −1 . The same data is used to update the measurement of the B s 0 lifetime, τ s = 1.54 −0.13 +0.14 (stat) ± 0.04 (syst) ps.
This result supersedes the previous measurement ( 1.59 +0.17 -0.15 (stat.) +-0.03 (sys.) ps ) presented in reference PL 361B, 221.
No description provided.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.
The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.
Results on K s 0 production at central rapidity in sulphur-tungsten interactions are presented. The selection procedure used to identify K s 0 particles through their decay to two charged pions is described. The m T spectra for K s 0 , Λ and Λ and the relative production rates K s 0 Λ and K s 0 Λ , calculated in the kinematic region p T > 1 GeV/ c and 2.5 ≤ y LAB ≤ 3.0, are discussed.
No description provided.
No description provided.
None
No description provided.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
.
We measure the differential cross sections with respect to Feynman x ( xF) and transverse momentum ( pT) for π, K, and p-induced charm meson production using fully reconstructed D+, D0, and Ds decays. The shapes of these cross sections are compared to the theoretical predictions for charm quark production of next-to-leading order perturbative QCD using modern parametrizations of the pion and nucleon parton distributions. We observe the differences expected in production induced by projectiles with different gluon distributions, harder distributions being indicated for mesons than for protons.
Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.
Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.
Result of fitting DSIG/dXL spectra with form (1-XL)**POWER.