The first observation of the production of W$^\pm$W$^\pm$ bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC. Multivariate discriminants are used to distinguish the signal process from the main backgrounds. A binned maximum likelihood fit is performed to extract the signal cross section. The measured cross section for production of same-sign W bosons decaying leptonically is 80.7 $\pm$ 11.2 (stat) $^{+9.5}_{-8.6}$ (syst) $\pm$ 12.1 (model) fb, whereas the measured fiducial cross section is 6.28 $\pm$ 0.81 (stat) $\pm$ 0.69 (syst) $\pm$ 0.37 (model) fb. The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis.
A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.
Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.
A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.
The second-order Fourier coefficients ($v_2$) characterizing the azimuthal distribution of $\Upsilon$(1S) and $\Upsilon$(2S) mesons arising from PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the $v_2$ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y|$$\lt$ 2.4, with the transverse momentum 0 $\lt$$p_\mathrm{T}$$\lt$ 50 GeV/$c$, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/$\psi$ mesons, the measured $v_2$ values for the $\Upsilon$ mesons are found to be consistent with zero.
A search for the direct production of charginos and neutralinos in final states with three leptons and missing transverse momentum is presented. The analysis is based on 20.3 fb-1 of sqrt(s) = 8 TeV proton--proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations and limits are set in R-parity-conserving phenomenological Minimal Supersymmetric Standard Models and in simplified supersymmetric models, significantly extending previous results. For simplified supersymmetric models of direct chargino ($\tilde\chi^\pm_1$) and next-to-lightest neutralino ($\tilde{\chi}_2^0$) production with decays to lightest neutralino ($\tilde{\chi}_1^0$) via either all three generations of sleptons, staus only, gauge bosons, or Higgs bosons, $\tilde\chi^\pm_1$ and $\tilde{\chi}_2^0$ masses are excluded up to 700 GeV, 380 GeV, 345 GeV, or 148 GeV respectively, for a massless $\tilde{\chi}_1^0$.
Deuteron production in high-energy collisions is sensitive to the space-time evolution of the collision system, and is typically described by a coalescence mechanism. For the first time, we present results on jet-associated deuteron production in \pp collisions at $\sqrt{s}=13$ TeV, providing an opportunity to test the established picture for deuteron production in events with a hard scattering. Using a trigger particle with high transverse-momentum ($p_{\rm T}>5$ GeV/$c$) as a proxy for the presence of a jet at midrapidity, we observe a measurable population of deuterons being produced around the jet proxy. The associated deuteron yield measured in a narrow angular range around the trigger particle differs by 2.4-4.8 standard deviations from the uncorrelated background. The data are described by PYTHIA model calculations featuring baryon coalescence.
Two-particle correlations are presented for K$^0_\mathrm{S}$, $\Lambda$, and $\overline\Lambda$ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb$^{-1}$ and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the K$^0_\mathrm{S}$K$^0_\mathrm{S}$ correlations is found to decrease from 4.6 to 1.6 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the $\Lambda$K$^0_\mathrm{S}$ and $\Lambda\Lambda$ (including their charge conjugates) correlations using the Lednick$\'y$-Lyuboshitz model and are compared to theoretical and other experimental results.
This paper reports the results of a search for strong production of supersymmetric particles in 20.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 8 TeV using the ATLAS detector at the LHC. The search is performed separately in events with either zero or at least one high $p_\mathrm{T}$ lepton (electron or muon), large missing transverse momentum, high jet multiplicity and at least three jets identified as originated from the fragmentation of a b-quark. No excess is observed with respect to the Standard Model predictions. The results are interpreted in the context of several supersymmetric models involving gluinos and scalar top and bottom quarks, as well as a mSUGRA/CMSSM model. Gluino masses up to 1340 GeV are excluded, depending on the model, significantly extending the previous ATLAS limits.
Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9% of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.