Product of charged kaons in central S + S and O + Au collisions at 200 GeV/nucleon has been studied in the NA 35 Streamer Chamber experiment. Mean multiplicities and transverse mass distributions were obtained. They were compared with nucleon-nucleon data and with model predictions.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z=6 and Z=7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.
No description provided.
The inclusive cross sections of backward proton production in π − ( K − , p ) -Be, Al, Cu, Pb interactions at 40 GeV/ c are presented. Protons have been detected in the angular range 150°–165° and kinetic energy region 0.1–0.3 GeV. The invariant cross-section ratios for various beam particles are independent of the values of kinetic energy and of the nuclear target type: 〈ƒ K − /ƒ π − 〉= 0.87 ± 0.03 stat ± 0.03 syst , 〈ƒ p /ƒ π − 〉 = 1.82 ± 0.10 stat ± 0.05 syst . The A -dependence of the cross-section slope parameter for A ⩾27 is less than ∼2%.
CYCLE N1.
CYCLE N1.
CYCLE N1.
We present our first results on φ and ϱ+ω production in pW and SW collisions at 200 GeV/nucleon, obtained using the HELIOS/3 muon spectrometer, which measures dimuons in a large acceptance in transverse momentum and rapidity. The data show a clear increase of the ratio φ/(ϱ+ω) going from pW to SW collisions and a slight increase from peripheral to central SW collisions. This the case for low (p t ≤ 0.6GeV/c) and high (p t > 0.6 GeV/c) transverse momentum. The rise is due to an increase in the number of produced φ mesons.
No description provided.
No description provided.
Mixed transverse(P T ) momentum and rapidity distributions of charged particles produced in 200 GeV/AMU heavy ion collisions are obtained with Magnetic-Interferometric-Emulsion-Chamber ( MAGIC ) by CERN-EMU05 experiments. The P T spectra at different rapidity regions showed no anomalous enhancement of low P T components over a conventional, single exponential function with slope values ranging from 160 to 200 MeV/c.
EVENTS SELECTED FOR THE ANALYSIS ARE THOSE WITH CHARGED MULTIPLICITY MORE THAN 400 FOR CENTRAL S+PB COLLISIONS.
Oxygen and sulfur nuclei with energies of 200 GeV/nucleon have been allowed to interact in nuclear emulsions exposed at CERN. These emulsions have been scanned with a minimum bias so that essentially all the interactions occurring were detected. Nearly 1000 interactions of each projectile have been analyzed. We present results on the multiplicity distributions, the pseudorapidity distributions, and the fragmentation of the projectile and target nuclei. It is shown that the mean number of intranuclear collisions in each interaction, calculated from a superposition model, provides a useful parameter for organizing the data. We conclude that there are no significant deviations even at these energies from models, such as the venus model, describing the interactions as being the superposition of individual nucleon-nucleon collisions.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
FOR PI- MESON: THETA(RF=LAB)=<75 DEGREE.
The electroproduction of π0 on the proton was measured from 0 to 2.5 MeV above threshold for virtual-photon 4-momenta of -0.05 and -0.1 (GeV/c)2. The sum of the lowest-order contributing multipoles, a0=‖E0+‖2-εL‖L0+‖2, was determined with a precision an order of magnitude better than previously possible. Our results for a0 are consistent with present calculations. Our extracted value for ‖L0+‖2 at the ‘‘photon point’’ is in agreement with recent predictions.
Joined statistics for two incident electron energy of 300 and 500 MeV.