We report on the observation of single W boson production in a data sample collected by the L3 detector at LEP2. The signal consists of large missing energy final states with a single energetic lepton or two hadronic jets. The cross-section is measured to be 0.61 −0.33 +0.43 ± 0.05 pb at the centre of mass energy s = 172 GeV , consistent with the Standard Model expectation. From this measurement the following limits on the anomalo γWW gauge couplingsare derived at 95% CL: −3.6 < Δκ γ < 1.5 and −3.6 < λ γ < 3.6.
No description provided.
No description provided.
We report the observation and measurement of the rate of diffractive dijet production at the Fermilab Tevatron p¯p collider at s=1.8TeV. In events with two jets of ET>20GeV, 1.8<|η|<3.5, and η1η2>0, we find that the diffractive to nondiffractive production ratio is RJJ=[0.75±0.05(stat)±0.09(syst)]%. By comparing this result, in combination with our measured rate for diffractive W boson production reported previously, with predictions based on a hard partonic pomeron structure, we determine the pomeron gluon fraction to be fg=0.7±0.2.
No description provided.
We present the first measurement of the atomic mass dependence of central \Xi~- and \overline{\Xi}~+ production. It is measured using a sample of 22,459 \Xi~-'s and \overline{\Xi}~+'s produced in collisions between a 250 GeV \pi~- beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function \sigma_0 A~\alpha, where A is the atomic mass. We measure \alpha = 0.924+-0.020+-0.025, for Feynman-x in the range -0.09 < x_F < 0.15.
No description provided.
No description provided.
No description provided.
We present the first observation of the all hadronic decay of tt¯ pairs. The analysis is performed using 109pb−1 of pp¯ collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We observe an excess of events with five or more jets, including one or two b jets, relative to background expectations. Based on this excess we evaluate the production cross section to be in agreement with previous results. We measure the top mass to be 186±10±12GeV/c2.
The cross section is given in the paper at a TQ mass of 175 GeV. The values at TQ mass = (175 +- 10) GeV is evaluated as +20% and -12% as given in the paper. The statistical error has also been scaled.
The measured value of the top mass.
Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function $g_1~n(x,Q~2)$ in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized $~3$He internal gas target. The data cover the kinematic range $0.023<x<0.6$ and $1 (GeV/c)~2 < Q~2 <15 (GeV/c)~2$. The integral $\int_{0.023}~{0.6} g_1~n(x) dx$ evaluated at a fixed $Q~2$ of $2.5 (GeV/c)~2$ is $-0.034\pm 0.013(stat.)\pm 0.005(syst.)$. Assuming Regge behavior at low $x$, the first moment $\Gamma_1~n=\int_0~1 g_1~n(x) dx$ is $-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.)$.
No description provided.
Data extrapolated to full x region. Second systematic error is the error on this extrapolation.
In June 1996, the LEP centre-of-mass energy was raised to 161 GeV. Pair production of W bosons in e + e − collisions was observed for the first time by the LEP experiments. An integrated luminosity of 11 pb −1 was recorded in the ALEPH detector, in which WW candidate events were observed. In 6 events both Ws decay leptonically. In 16 events, one W decays leptonically, the other into hadrons. In the channel where both Ws decay into hadrons, a signal was separated from the large background by means of several multi-variate analyses. The W pair cross-section is measured to be σ WW = 4.23 ± 0.73 (stat.) ± 0.19 (syst.) pb. From this cross-section, the W mass is derived within the framework of the Standard Model: m W = 80.14 ± 0.34 (stat.) ± 0.09 (syst.) ± 0.03 (LEP energy) GeV/ c 2
No description provided.
The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.
No description provided.
No description provided.
No description provided.
Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\Lambda^{NLO,(4)}_{\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \pm 0.68}$
The cross sections are normalized to the world average of SIG(NUMU)/E/A = 0.677E-38 cm^2/GeV as no absolute flux measurement was made in this experiment.
These cross sections are normalized to the world average of SIG(NUMU)/E/A =0.677E-38 cm^2/GeV multiplied by the world average of SIG(NUMUBAR)/SIG(NUMU) i n c l u d i n g this experiment.
No description provided.
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
The cross section of the γγ → p p reaction was measured at two-photon center-of-mass energy ( W γγ ) between 2.2 and 3.3 GeV, using the two-photon process at an e + e − collider, TRISTAN. The W γγ dependence of the cross section integrated over a c.m. angular region of | cos θ ∗ | < 0.6 is in good agreement with the previous measurements and the theoreticalv prediction based on diquark model in the high W γγ region.
Numerical values supplied by Hirhoshi Hamasaki.
Angular distributions.