The depolarization parameter D onon in p p elastic scattering has been measured at LEAR for thirteen momenta between 679 and 1550 MeV/c in the backward angular region. Striking disagreement with theoretical models is observed.
No description provided.
No description provided.
No description provided.
Parity nonconservation in proton-proton scattering has been studied by measuring the angle-integrated longitudinal analyzing power A z . We found A z (13.6 MeV)=(−1.5±0.5)×10 −7 . The error includes uncertainties due to statistics and corrections, as well as upper limits on systematic effects. The experimental result is discussed with respect to recent theoretical calculations.
No description provided.
Total reaction cross sections of 20 MeV π − and 30 MeV π + and π − have been measured for carbon and nickel targets. The experimental results are in very good agreement with calculations based on commonly accepted pion-nucleus potentials but disagree with calculations based on the potentials associated with the so-called pionic atom anomaly.
No description provided.
No description provided.
Absolute π±d differential cross sections and charge asymmetries have been measured at an incident pion energy of 65 MeV, using an active target of deuterated scintillator plastic to detect recoil deuterons in coincidence with scattered pions. Statistical and systematic uncertainties in the cross sections are each typically ±3%. The charge asymmetry is consistent with theoretical predictions.
No description provided.
The two-spin parameter A LL in inclusive π 0 productionby longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F =0 with 1⩽ p t ⩽3 GeV/ c . The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and < − 0.1 for π 0 's produced by protons, and values of A LL ( p p) > 0.1 and < −0.2 for incident antiprotons. The relevance of A LL (pp) for the gluon spin density is discussed. The data are in good agreement with “conventional”, small or zero, gluon polarization.
No description provided.
Analyzing powers ( A y ) and spin-rotation-depolarization parameters ( D SS , D SL , D LS , D LL , D NN ) were determined for 500 MeV p + 2 H and p + 12 C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p + 2 H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p + 12 C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p + 12 C spin-observables.
Inclusive quasielastic p deut measurements.
Inclusive quasielastic p c measurements.
An angular method of identifying diffractive excitation (DE) events for interactions of a hadron beam in nuclear emulsion is applied to identifying DE events in interactions of heavy ions beams. The ‘‘apparent’’ mean free paths (MFP) of DE processes for O16 (28Si) beams are 1.00±0.12, 2.4−0.7+1.6, and 2.2±0.4 (1.5±0.2) m, respectively, at 200, 60, and 14.6 GeV/nucleon, which corresponds to 20–10% of the MFP for total inelastic interactions. Distinctive features of diffractively excited nuclei are discussed.
No description provided.
No description provided.
No description provided.
None
No description provided.
CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.
No description provided.
Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.
Measurements of the tranverse cross section differences.
Measurements of the tranverse cross section differences.
Measurement of the longitudinal cross section difference.
None
No description provided.