The electromagnetic form factors of the neutron in the time-like region have been measured for the first time, from the threshold up to q 2 ⋟ 6 GeV 2 . The neutron magnetic form factor turns out to be larger than the proton one; the angular distribution suggests that for the neutron, at variance with the proton case, electric and magnetic form factors could be different. Further measurements are also reported, concerning the proton form factors and the Σ Σ production, together with the multihadronic cross section and the J / Γ branching ratio into n n .
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The SQRT(S) values with (C=NOMIN) and (C=SHIFT) correspond to the nominal energy and shifted energy analysis (see text of paper for details).
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The NEUTRON formfactor value are calculated in two hypotheses: GE = GM and GE = 0.
The uncertainty on the evaluated cross section is given by the quadratic combination of the statistical and systematic uncertainties.
A study of the φ → π + π − π 0 decay mode has been performed using a data sample of about 2.0 million φ decays collected by the CMD-2 detector at VEPP-2M collider in Novosibirsk. The following parameters of the φ -meson have been measured: Br ( φ → π + π − π 0 )=0.145±0.009±0.003 and δ φ − ω =162±17°. The analysis of the Dalitz plot showed the dominance of the φ → ρπ intermediate mechanism, the limits for the ratio of the direct amplitude of φ →3 π to that of φ → ρπ are −0.16< a 1 <0.11 at 90% C.L. The upper limits for the probabilities of the decay modes φ → π + π − η and direct φ → ργγ have been found for the first time: Br ( φ → π + π − η )<3×10 −4 and Br ( φ → ργγ )<5×10 −4 at 90% C.L.
No description provided.
Using linearly polarized tagged photons from coherent bremsstrahlung, differential cross sections and beam asymmetries for Compton scattering by 4 He have been measured at MAMI in the energy interval between 150 MeV and 500 MeV for scattering angles of θ γ lab =37°, 93° and 137°, thus largely increasing the available data base. Improved calculations in terms of the Δ -hole model completely fail to describe the data at large scattering angles. The same proved to be true for a schematic model, even after taking into account properties of nuclear photo-absorption in very detail.
Axis error includes +- 0.0/0.0 contribution.
The production of Λ hypernuclei was studied in proton reactions with Bi nuclei and the lifetime of the produced heavy hypernuclei was measured by the observation of delayed fission using the recoil shadow method. The measurements were performed at 1.9 GeV proton energy whereas the background was determined at 1.0 GeV. From the distribution of the fission fragments in the shadow region the lifetime τ=[161±7( statist. )±14( system. )] ps was obtained and from a comparison of counting rates of prompt and delayed fission fragments the production cross section of hot Λ hypernuclei was determined to be (350±140) μ b.
No description provided.
Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.
Systematic and statistical errors are added in quadrature.
Systematic and statistical errors are added in quadrature.
Analyzing powers were measured and used to quantify the observation that s -wave processes dominate near threshold. Values of A y ( θ π , φ π =0°) are presented for η values of 0.22, 0.42 and 0.50. Maximum analyzing powers A N 0 are equal to −0.13, −0.24, and −0.28, respectively. A partial wave analysis, made possible by the new analyzing powers and available cross sections, indicates that the s -wave contribution to the cross section constitutes about 91% of the total cross section at η =0.22, or 300 MeV. It decreases to about 75% for η =0.5.
Polarized beam.
The reaction pp → K + Λp was measured exclusively at the cooler synchrotron COSY at beam momenta of p Beam = 2.50 GeV/c and p Beam = 2.75 GeV/c using the TOF detector. Angular and momentum distributions were obtained for the full phase space of the reaction products. Total cross sections were extracted to be (2.7 ± 0.3) μ b and (12.0 ± 0.4) μ b, respectively. The polarization of the Λ -hyperon was determined as a function of its transversal momentum and was found to be negative for transverse momentum transfers of p T ≥ 0.3 GeV/c. The results together with existing data are compared with phenomenological parametrizations and model calculations on the basis of meson exchange.
Axis error includes +- 10/10 contribution (Overall normalization error).
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.