Parity nonconservation in proton-proton scattering has been studied by measuring the angle-integrated longitudinal analyzing power A z . We found A z (13.6 MeV)=(−1.5±0.5)×10 −7 . The error includes uncertainties due to statistics and corrections, as well as upper limits on systematic effects. The experimental result is discussed with respect to recent theoretical calculations.
No description provided.
Using the CUSB-II detector at CESR we have measured the B ∗ cross section in the energy range from s = 10.61–10.65 GeV and 10.70 GeV to be 0.16±0.03 nb and 0.33±0.13 nb respectively. The photon energy for B ∗ →Bγ decays is measured to be 45.4±0.8 MeV, in agreement with our earlier determination. The implication of this measurement for future B factories is discussed.
Errors include systematic uncertainties.
The scaled factorial moments, F q and fractal moments, G q have been measured and their power law variation as a function of size of the pseudorapidity interval has been studied in the central region of the pseudorapidity distribution of the produced charged particles in quasi-central and central collisions of 16 O + Ag Br at 2.1 GeV c per nucleon and 24 Mg + Ag Br at 4.5 GeV c per nucleon. The smooth spectral function f ( α q ), characterizing the fluctuation in the pseudorapidity distribution and the generalised dimensions D q have been derived from G q moments. The analyses reveal a self-similarity in multiparticle production in nucleus-nucleus interactions at an incident momentum of a few GeV/ c per nucleon. Interesting observations can be very effective in establishing multifractality in multiparticle production at this energy range.
No description provided.
No description provided.
Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.
The cross sections are parametrized as A**POWER.
An electromagnetic dissociation (ED) cross section of 3.16±0.23 b was observed for 197 Au( 238 U, X) 196 Au with 0.96 GeV/ nucleon 238 U projectiles. The gross features of ED are reproduced in a Weizsäcker-Williams (WW) calculation, but the projectile charge dependence is weaker than expected from WW. WW calculations are extended to the regime of energies of the next generation of relativistic heavy-ion colliders.
No description provided.
No description provided.
The tensor analyzing power T 20 in inclusive deuteron breakup at 9 GeV/c and 0° on hydrogen and carbon targets up to internal momenta k of the proton in the deuteron of ∼ 1 GeV/c has been measured. The analyzing power remains negative up to the highest measured values of k , and is in definite disagreement with predictions from several theoretical models. A systematic difference between T 20 for deuteron breakup on hydrogen and carbon is observed.
No description provided.
No description provided.
We report a search for the production of light quark vector bosons in hadron-nucleus collisions at 100 GeV bombarding energy. We find surprisingly few of these resonances produced. The lack of these particles is though to be due to the absorption by the many modestly energetic nucleons and the few anti-nucleons in the final state.
No description provided.
No description provided.
No description provided.
None
No description provided.
CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.
No description provided.
Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.
Measurements of the tranverse cross section differences.
Measurements of the tranverse cross section differences.
Measurement of the longitudinal cross section difference.
We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).
Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.
ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.
ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.