The reaction pp→p f (K + K − K + K − )p s in which the K + K − K + K − system is centrally produced has been studied at 300 GeV/ c . φφ production has been observed and the ratio σ (φK + K − )/ σ ( φφ ) is 1.0±0.3. The cross section for central production of φφ is found to be the same at 300 GeV/ c and 85 GeV/ c . An angular analysis of the φφ system favours J P =2 + over 0 − .
No description provided.
We report measurements of the proton elastic form factors, G E p and G M p , extracted from electron scattering in the range 1⩽ Q 2 ⩽3(GeV/ c ) 2 . The uncertainties are <15% in G E p and <3% in G M p . The values of G E p are larger than indicated by most theoretical parameterizations, The ratio of Pauli and Dirac form factors, Q 2 F 2 p / F 1 p , is lower and demonstrates less Q 2 dependence than most of these parameterizations. Comparisons are made to theoretical models, including those based on perturbative QCD and vector-meson dominance.
No description provided.
No description provided.
No description provided.
The spin-dependent observables N 0 nkk , D 0 s ″0 k and K 0 s ″ k 0 in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen-spin polarized target. The beam and target polarizations were oriented longitudinally. Precession of the recoil-particle spin in the target holding field introduces small contributions from other parameters. The present data agree with the few previously existing measurements. Below 1.3 GeV our data are compared with the predictions of the Saclay-Geneva phase-shift analysis. The new results will considerably affect the phase-shift analysis solutions and will contribute to their extension towards higher energies.
No description provided.
No description provided.
No description provided.
The spin dependent observables N 0s n ″ k , K 0s″s0 and D 0s″0k in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The beam polarization was oriented in the vertical plane, the target polarization was oriented along the incident beam direction. Below 1 GeV the present data agree with previously existing measurements. Below 1.3 GeV they are compared with the predictions of the Saclay-Geneva phase shift analysis. The results will improve the phase shift analysis solutions and will contribute to their extensions towards higher energies. Together with our previous results the data allow a direct reconstruction of the pp elastic matrix over the energy region from 0.84 too 2.7 GeV.
No description provided.
No description provided.
No description provided.
Results are presented of an analysis of the reaction pp→p f (K S 0 K ± π ∓ )p s at 300 GeV/ c . Clear f 1 (1285) and f 1 (1420) signals are seen. A spin-parity analysis shows that both are consistent with being 1 ++ states. The f 1 (1420) is found to decay only to K ∗ K and no 0 −+ or 1 +− waves are required to describe the data. The production of the f 1 (1285) as a function of energy is not the same as that for the f 1 (1420) whose cross section is found to be constant with energy.
No description provided.
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.
None
No description provided.
No description provided.
No description provided.
We present results on a high statistics study of the proton structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a hydrogen target. The analysis is based on 1.8 × 10 6 events after all cuts, recorded at beam energies of 100, 120, 200 and 280 GeV and covering a kinematic range 0.06 ⩽ x ⩽ 0.80 and 7 GeV 2 ⩽ Q 2 ⩽260 GeV 2 . At small x , we find R to be different from zero in agreement with predictions of perturbative QCD.
THE AVERAGE VALUES OF Q**2 AT EACH OF THE X VALUES LISTED IN THIS TABLE ARE 15,20,20,25,30,35,40,45,50,50.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
A search for baryonia with negative and positive strangeness decaying respectively into\(\Lambda+ \bar p + pions\) and\(\bar \Lambda+ p + pions\) has been carried out in a neutron beam with a mean momentum of ≅40 GeV/c in an experiment performed at the Serpukhov accelerator. There is a strong indication of the existence of these baryonia. The following four charge states are observed for negative and positive strangeness: neutral, negative, positive and doubly charged. Their mean mass is 3055±25 MeV/c2 and the width Γ≦36±15 MeV/c2. The data show that the isotopic spin of the baryonia is ≧3/2. The baryonia production cross sections in the acceptable kinematic regionXF≧0.2 andPT≦1 GeV/c times the branching ratios of the observed decays are of the order of 1 μb per nucleon.
No description provided.
The production of neutral pions by the interaction of 200A·GeV p and16O projectiles with a Au target has been studied in the pseudorapidity range 1.5≦η≦2.1. Transverse momentum spectra have been measured between 0.4 GeV/c and 3.6 GeV/c and their dependence on the centrality of the collision has been investigated. The peripheral-collision spectra display a marked change of slope with a hard component starting at about 1.8 GeV/c, in contrast to central-collision data. The data are discussed in comparison to p+p and α+α data from the ISR.
Data obtained with minimum bias trigger conditions.
Data obtained with minimum bias trigger conditions.
Data for central collisions.