Transverse-energy distributions have been measured for the collisions of the 32 S nucleus with Al, Ag, W, Pt, Pb, and U target nuclei, at an incident energy of 200 GeV per nucleon. The shapes of these distribution reflect the geometry of the collisions, including the deformation effects. For central collisions, the transverse-energy production in the region −0.1< η lab <2.9 increases approximately as A 0.5 , where A is the atomic mass number of the target. This increase is accompanied by a relative depletion in the forward region η lab > 2.9. These results are compared with those obtained under similar conditions with incident 16 O nuclei. A comparison is also made with the predictions of a Monte Carlo generator based on the dual parton model. Finally, we give estimates of the energy density reached and its dependence on the atomic mass number of the projectile.
No description provided.
No description provided.
No description provided.
None
No description provided.
Total cross section (4PIA0). Errors contain systematics. Calculated using data from De Sanctis et al., PR C34(86)413, combined with this work.
A search for pairs of highpT prompt photons produced in hydrogen by a 280 GeV/c incidentπ- beam has been carried out using a fine-grained electromagnetic calorimeter and the Omega spectrometer at the CERN SPS. Clear evidence for the existence of such events is found with a six standard deviation signal forpT>3.0 GeV/c. The cross-sections are consistent with beyond leading order QCD calculations. A discussion on the determination of αs is also presented.
PT is the transverse momentum of either of the two photons.
PT is the transverse momentum of either of the two photons.
We present results of our systematic studies of charged-shower-particle multiplicities and their dependence on pseudorapidity intervals for nearly central events produced by S32 at 200 GeV/nucleon and O16 at 200 and 60 GeV/nucleon in nuclear emulsion. An increase in the particle density with the increase of particle energy and mass is observed. We find an energy-independent linear relation between the maximum particle density (in a given pseudorapidity interval) and shower-particle multiplicity.
No description provided.
No description provided.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement techniques to determine total charge changing and partial cross sections for the production of fragments of chargeZ F =6 toZ F =15 in collisions of32S beam nuclei at energies of 0.7, 1.2 and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. By application of factorization rules measured partial cross sections are separated into pure nuclear and electromagnetic components. Total and partial cross sections for electromagnetic dissociation are compared with theoretical models. The energy dependence of pure nuclear cross sections is investigated.
No description provided.
NUCLEUS=12C 18H 7O.
NUCLEUS=18C 38H 7O.
None
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
None
No description provided.
No description provided.
'CHARGED EXCHANGED REACTION', MOMENTUM OF N IS GREATER THAN MOMENTUM OF EACH PROTON.
None
No description provided.
No description provided.
No description provided.
None
.
.
.
A measurement of the direct production of photons with high transverse momentum from\(\bar pp\) collisions at\(\sqrt s= 630\) GeV is presented. The structure of events containing a high transverse momentum photon is studied. The results support predictions from QCD theory.
The last data point is an average over the interval 60-100 GeV in which 5 events are found.
No description provided.
No description provided.