The differential cross sections of p¯p elastic scattering have been measured at incident beam momenta of 390, 490, 590, 690, and 780 MeV/c. The results are compared with the predictions of various N¯N potential models. None of these models completely explains the present results.
No description provided.
Legendre expansion coefficients.
The hadronic production of charmed states was studied in a two-arm spectrometer using a 205-GeV/c negative-pion beam incident upon a beryllium target. One arm, filled with dense absorber, triggered the detectors upon the passage of a muon with a moderate transverse momentum and a total momentum of at least 4 GeV/c. The other arm was an open-geometry magnetic spectrometer which had both neutral- and charged-particle identification capabilities. The apparatus, the data, and an invariant-mass-plot search for evidence of charmed-meson production through several charged-particle decay modes are described. The Kπ, Kππ, and Kπππ mass plots fail to reveal significant D-meson signals. Based upon the Kπ mass plots, the 95%-confidence upper limit on the DD¯ production cross section is found to be less than 51 μb per nucleon for the production models tested. A search for evidence of charged-D* production yields 30±16 combinations above background in association with the expected trigger muon charge. Interpreted as a D* signal, this excess corresponds to a model-dependent inclusive DD¯ production cross section of 34±18−9+14 μb per nucleon. Model-dependent upper limits on the ratio of the F to D cross sections are also presented.
Uncorrelated model for charmed mesons production.
'Correlated' model for pair of charmed mesons production.
Uncorrelated model for D/S+- mesons production.
Cross sections for the inclusive processes p+A→KS0+X and p+A→Λ0+X (A=Be, Cu, and W) have been measured for incident protons at 12 GeV. Data are obtained at five laboratory production angles of 3.5°, 5.0°, 6.5°, 8.0°, and 9.5°, covering the kinematic range 0.3≤xF≤0.8 and 0.4≤pT≤1.3 GeV/c for KS0’s and 0.2≤xF≤0.9 and 0.4≤pT≤1.7 GeV/c for Λ0’s. The results are discussed in terms of the pT dependence, the xF dependence, the A dependence, the cross-section ratio KS0/Λ0, and triple-Regge behavior. The A dependence of KS0 and Λ0 spectra is analyzed in the constituent-quark model. The average pT2’s of quarks and diquarks involved in the KS0 and Λ0 production processes are discussed.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The data on invariant cross sections of deuterons emitted in the interactions of 3He with C, Cu and Pb targets at 4.9 GeV/nucleon are given. Inclusive spectra of deuterons produced in the reactions were measured from 20 deg to 150 deg in the laboratory frame with 10 deg step. Measurements were made on external 3He-beam at Dubna synchrophasotron
No description provided.
No description provided.
No description provided.
None
Fitted peak cross section.
The cross section of the process e+e- -> pi+pi-pi0. The value of fitted peak cross section was additionaly corrected by 3.5% for the nuclear interaction loss and 1.2% for Br(pi0->e+e-gamma)
None
No description provided.
No description provided.
No description provided.
Using a 320 GeV c π − beam incident on three different target materials Al, Fe, and U, the A -dependence of charm production is studied by measuring the yield of prompt single muons. Parametrizing the charm cross section as σ cc ( π − A) = σ 0 Aα the measured α values are α ( μ + ) = 0.76 ± 0.08 and α ( μ − ) = 0.83 ± 0.06.
No description provided.
Numbers of events per 10**6 incident PI-.
Single diffraction dissociation was measured in the reaction p¯p→p¯X at the centre-of-mass energy √ s = 546 GeV. The mass M of the system X was deduced from the pseudorapidity distribution of the observed charged tracks. The cross section of single diffraction dissociation for M 2 /s⩽0.05isσ sd =9.4 ± 0.7 mb. Comparison to the ISR data shows that σ sd increases with energy less fast than the total and the elastic cross sections.
No description provided.