The ratio Rν of the neutral- to charged-current cross sections of neutrinos in iron has been measured in an exposure of the CERN-Dortmund-Heidelberg-Saclay neutrino detector to a 160-GeV/c neutrino narrow-band beam at the CERN Super Proton Synchrotron. The result is Rν=0.3072±0.0025(stat)±0.0020(syst), for hadronic energy greater than 10 GeV. The electroweak mixing parameter is sin2θW=0.225±0.005(expt)±0.003(theor)+0.013(mc−1.5 GeVc2), where mc is the charm-quark mass.
No description provided.
An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).
No description provided.
We present stdies of events triggered on two high-pT jets, produced inpp collisions at the CERN Intersecting Storage Rings (ISR) at\(\sqrt s \)=63 GeV, using a large solid angle calorimeter. The cross-section for producing two jets is measured in the dijet mass range 17–50 GeV/c2. A high-statistics sample of dijet events, where each jet has transverse energy above 10 GeV, is used to study the structure of jets and the associated event. We find the longitudinal fragmentation function to be similar to that of jets emerging frome+e− collisions but considerably harder than that observed at the Super Proton Synchrotron (SPS)\(p\bar p\) Collider. A steepening of the fragmentation function is observed when increasing the jet energy. Studies of the charge distribution in jets show that these predominantly originate from fragmenting valence quarks. The transverse energy and particle flows are presented as functions of the azimuthal distance from the jet axis.
No description provided.
No description provided.
FRAGMENTATION FUNCTION FOR ET(JET) > 10 GEV.
THE PHASES IN THIS TABLE WERE FIXED AT INITIAL STAGE OF PWA.
No description provided.
None
No description provided.
No description provided.
No description provided.
The experimental results are presented for ratios of ν-meson inclusive differential cross sections in 10.5 GeV/ c π + p, π + D and π + A collisions, R D/p =(d σ /d x F )( π + D → η X)/ (d σ /d x F ) π + p→ η X), R A =(d σ /d x F )( π + D→ η X) in the beam fragmentation region. The results are based on the statistics of ≈ 5 × 10 4 detected η → 2 γ decays. It is shown that the power α in the parametrisation R A ≈ A α ( xf ) does not change significantly with x F and its mean value is 0.50±0.02. The lower limit is obtained for the effective coefficient with string tension in the colour string model, κ ⩾ 3 GeV/fm. The observed growth of R A with x F can be explained by an assumption of a neutron halo with the factor H ≈ 4 in the nuclei.
No description provided.
No description provided.
No description provided.
Proton-antiproton elastic scattering was measured at the centre-of-mass energy s = 630 GeV in the four-momentum transfer range 0.7 ⩽ − t ⩽ 2.2 GeV 2 . The new data confirm our previous results at s = 546 GeV on the presence of a break in the t -distribution at − t ≃ 0.9 GeV 2 which is followed by a shoulder, and extend the momentum transfer range to larger values. The t -dependence of the differential cross section beyond the break is discussed.
Errors contain statistics and acceptance uncertainty.
The inclusive jet cross section has been measured in the UA1 experiment at the CERN p p Collider at centre-of-mass energies √ s = 546 GeV and √ s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √ s is accounted for in terms of x T scaling.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////DUE TO ABSORPTION CORRECTIONS//THE CORRECTION TO THE RATIO DEUT/P DUE TO DIFFERENCE OF PARTICLE ABSORPTION IN CHERENKOV COUNTERS WERE DETERMINED EXPERIMENTALLY (IN THE RANGE 6-45 PCT). THERE WAS THE CORRECTION OF ABOUT 19 PCT FOR ABSORPTION IN THE OTHER PARTS OF THE SPECTROMETER).
Axis error includes +- 0.0/0.0 contribution (?////DUE TO ABSORPTION CORRECTIONS//THE CORRECTION TO THE RATIO DEUT/P DUE TO DIFFERENCE OF PARTICLE ABSORPTION IN CHERENKOV COUNTERS WERE DETERMINED EXPERIMENTALLY (IN THE RANGE 6-45 PCT). THERE WAS THE CORRECTION OF ABOUT 19 PCT FOR ABSORPTION IN THE OTHER PARTS OF THE SPECTROMETER).
Axis error includes +- 0.0/0.0 contribution (?////DUE TO ABSORPTION CORRECTIONS//THE CORRECTION TO THE RATIO DEUT/P DUE TO DIFFERENCE OF PARTICLE ABSORPTION IN CHERENKOV COUNTERS WERE DETERMINED EXPERIMENTALLY (IN THE RANGE 6-45 PCT). THERE WAS THE CORRECTION OF ABOUT 19 PCT FOR ABSORPTION IN THE OTHER PARTS OF THE SPECTROMETER).