We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.
No description provided.
No description provided.
Results of a measurement of the π−p charge-exchange process at backward angles are presented. Differential cross sections were measured in the angular region −0.5<cosθ*<−1.0 at incident momenta of 2, 3, 4, 5, and 6 GeV/c. An additional background subtraction to a version of the data published previously has a significant effect at 6 GeV/c and brings the data into agreement with more recent measurements. The 6-GeV/c data were combined with existing measurements of the differential cross sections for backward π+p and π−p elastic scattering to yield values for the isotopic-spin-½ and −32 u-channel and s-channel amplitudes for backward pion-nucleon scattering and for the magnitude of the phases between them. It is found that the u-channel amplitudes can be explained by pure Regge-pole (Δδ, Nα) exchange only near the extreme backward direction, but that a Reggeized absorption model agrees at least qualitatively with the data. The phase difference between the I=12 and 32 s-channel amplitudes is approximately 90° over the region −0.8<u<0 (GeV/c)2.
No description provided.
No description provided.
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have studied neutral final states produced in π−p collisions at momenta of 1.71, 1.89, 2.07, 2.27, and 2.46 GeVc, by observing the γ rays emitted. In particular, measurements are presented of (i) π−p→π0n, for which the Regge-pole fit at momenta ≥5.9 GeVc also agrees rather well here; (ii) π−p→η0n, for which the Regge model which fits at higher energies does not agree here; (iii) π−p→π0γn, in which there is some evidence for a diffraction dissociation process as well as ω0-meson production; (iv) π−p→π0π0n, which is dominated by production of N*0(1236)π0 and by peripheral production of pion pairs. In (iv), the former process is found to fit with the same Reggeized ρ-meson exchange model as charge-exchange scattering, while the latter gives indication of the s-wave ππ interaction. An account is given of new techniques, particularly in the data analysis, which were developed in the course of this work.
No description provided.
No description provided.
No description provided.
Final results are presented from a spark-chamber experiment performed at the Princeton-Pennsylvania Accelerator to measure the differential cross section near 0° for the reaction π−p→π0n. The data are extrapolated to 0° and the results of the extrapolation are compared with the results of other experiments and with dispersion relation predictions. The values of the forward-scattering amplitude for the fifteen values of incident π− momentum at which measurements were made are as follows: (p (MeV/c), (dσdΩ)0° (mb/sr)): (561,3.28), (636,2.95), (687,3.38), (750,2.48), (802,1.33), (930,2.42), (1005,3.15), (1030,3.43), (1077,1.70), (1134,1.04), (1434,0.31), (1579,0.56), (1711,0.73), (1914,0.87), (2106,0.56). The combined statistical and systematic uncertainties in these values is about ±9%. A description of the apparatus, a discussion of the methods of analysis, and a discussion of the errors contributing to the uncertainties in the above results are included in the text.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have performed an experiment to study the reaction π−+p→η+n near threshold, preliminary to a forthcoming measurement of charge asymmetry in η-meson decay. The η was identified by the velocity of the associated neutron. We detected neutrons produced in the forward hemisphere in the center-of-mass system corresponding to the most energetic neutrons in the laboratory. Data were taken at π− momenta between 670 and 805 MeVc. The four neutron detectors made it possible to detect neutrons at angles of 0° to 21° from the incident pion beam. We present backward differential cross sections for both pion charge exchange and η production calculated from the data. We looked for η′ at pion momenta of 1.5 BeVc and observed none. We obtained σ(π−p→nη′)≤60 μb.
No description provided.
No description provided.
No description provided.