We present the first results of a measurement of the total cross-section σ T in proton-proton collisions at equivalent laboratory momenta between 291 and 1480 GeV/ c at the CERN Intersecting Storage Rings (ISR). The method is based on the measurement of the ratio of the total interaction rate and the machine luminosity. The data show an increase of about 10% in σ T in this energy interval.
No description provided.
Measurements of proton-proton elastic scattering at angles around 6 mrad have been made at centre-of-mass energies of 23, 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The absolute scale of the cross-section was established by determination of the effective density of the colliding beans in their overlap region. Proton-proton total cross sections were deduced by extrapolation of the elastic differential cross-section to the forward direction and by application of the optical theorem. The results indicate that over the energy range studied the proton-proton total cross-section increases from about 39 to about 43 mb.
No description provided.
NEW VALUES OF ELASTIC SLOPE USING APPARATUS DESCRIBED IN U. AMALDI ET AL., PL 43B, 231 (1973).
We present the first results of an experiment at the CERN intersecting storage rings, which measures the total cross-section in proton-proton collisions. The equivalent laboratory momenta are 291, 496, 1068 and 1480 GeV/c. We have made a direct measurement of αT as the ratio between the total interaction rate and the machine luminosity. The present paper gives a detailed description of the experimental apparatus and of the analysis procedure. We find that αT increases by about 10% in the energy region studied.
No description provided.
An experiment was done using the new accelerated polarized proton beam at the Argonne National Laboratory zero-gradient synchrotron and a polarized proton target. The total cross section for proton-proton scattering at 3.5 GeV/c was measured in the spin states ↑↑ and ↑↓ perpendicular to the beam direction. The two cross sections were found to be equal within the experimental error of ±5%.
TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
Proton-proton elastic scattering has been measured at the CERN Intersecting Storage Rings in the four-momentum transfer range 0.001 ⩽… t …⩽ 0.015 GeV 2 at centre-of-mass energies of 23 and 31 GeV. The detection of Coulomb scattering and of its interference with nuclear scattering leads to the determination of the real part of the nuclear amplitude and of the total proton-proton cross section by the optical theorem.
No description provided.
No description provided.
In an exposure of the chamber Mirabelle at the Serpukhov accelerator, 1 943 interactions at 50 GeV/ c and 8 959 at 69 GeV/ c have been observed. Topological cross sections and charged multiplicity distributions are presented. The average charged multiplicities found are respectively 5.32 ± 0.13 and 5.89 ± 0.07.
2PRONG INELASTIC CROSS SECTIONS DERIVED BY SUBTRACTION OF OTHER PRONG CROSS SECTIONS AND KNOWN ELASTIC MEASUREMENTS FROM THE TOTAL.
In an exposure of the 30-in. hydrogen bubble chamber to a 303−GeVc proton beam, 2245 interactions have been observed. The measured total cross section is 39.0±1.0 mb and the average charged particle multiplicity 〈nch〉=8.86±0.16.
TOPOLOGICAL CROSS SECTIONS.
We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.
From 2728 events of 205-GeV pp interactions found in 15 000 pictures taken with the 30-in. hydrogen bubble chamber at the National Accelerator Laboratory, a total cross section of 39.5±1.1 mb was measured. The mean charged-particle multiplicity for inelastic pp collisions was measured to be 7.65±0.17. The prong distribution from 2 to 22 prongs is broader than a Poisson distribution and has a width parameter f2−=〈n−(n−−1)〉−〈n−〉2=0.95±0.21.
No description provided.