The inclusive cross section for the production ofKs0 mesons, Λ and\(\bar \Lambda\) particles in proton-proton interactions at\(\sqrt s= 63\) GeV is presented. The produced particles have been detected in the full phase space. Behaviour of the longitudinal and transversal depandences of the cross sections are discussed. The total production cross sections fors0 mesons and Λ particles was determined to\(\sigma _{{\rm K}_S^0 }= (25.5 \pm 1.4)\) mb andσΛ=(7.8±1.2) mb respectively. A strong energy dependence of the production cross sections is observed.
THE SIG(KS) ERROR INCLUDES THE UNCERTAINTY OF THE NORMALIZATION AND THE PT EXTRAPOLATION.
No description provided.
No description provided.
In an experiment with the 30-inch Hybrid Spectrometer at Fermilab we have obtained the inclusive and semi-inclusive production cross sections of the ϱ0 meson using a conventional background subtraction technique. Production cross sections for the ϱ0 are derived as a function of the Feynman scaling variablex, and the transverse variablespt2 andEt=(pt2+M2)1/2. The longitudinal distributions are compared with the (1−x) dependence of the proton and meson valence quark structure functions, using various forms of recombination and fragmentation models. The transverse distributions are compared with thermodynamic models. We give density matrix elements for the ϱ0 production from pions in the extreme forward region.
No description provided.
No description provided.
No description provided.
Inclusive π 0 production has been measured at the CERN Intersecting Storage Rings in αα and α p collisions near 90°, for p T between 2 and 5 GeV/c. The differential cross sections show a slower exponential fall-off with p T than has been observed in pp collisions at the corresponding nucleon-nucleon centre-of-mass energies at large p T . The ratio of the π 0 production cross sections for αα collisions to those for pp collisions is observed to be larger than 16.
No description provided.
No description provided.
The inclusive production of neutral kaons in 70 GeV/ c K + p interactions is studied with the CERN BEBC bubble chamber. The (semi-)inclusive cross sections are interpreted in terms of the various strangeness channels leading to neutral kaon production. The invariant inclusive cross section for kaon production is studied as a function of p t 2 and the Feynman variable x . The latter distributions are considered both “raw” and corrected for the presence of K 0 's resulting from K ∗ decay. They are compared with the predictions expected from the Regge-Mueller formalism, the recombination model and fragmentation models.
No description provided.
No description provided.
Results on inclusive production of γ,K n , Λ 0 and Λ 0 in K − p interactions at 110 GeV/ c are presented. Total cross sections, and differential cross sections in terms of Feynman x , rapidity and p T 2 are given. It is found that about 40% of K n 's are produced together with a strange particle pair, and that 80% of Λ 0 's are produced together with a K K pair. These Λ 0, 's are produced predominantly in the backward direction. Fits to the form (1−| x |) n to the x F distributions of K n and Λ 0 in the fragmentation regions are found to be in general agreement with quark counting rule predictions.
No description provided.
No description provided.
No description provided.
The energy dependence of the transverse momentum invariant distribution of pions and neutral kaons is studied in K − p interactions between 14.3 and 70 GeV/ c . The large P T part of the distributions violates the Feynman scaling and, above P T ≃ 1.5 GeV/ c , appears to be reasonably described by hard scattering models. The variation of the average transverse momentum is also studied as a function of the c.m. reduced longitudinal momentum, and its behaviour is compared to the data obtained via the hadronic shower produced in lepton-hadron interactions.
HERE K0 MEANS K0 OR AK0 I.E. K(NEUTRAL).
No description provided.
As part of a study of large p T phenomena in photon-proton collisions at the CERN ISR, a search for direct single photon production has been performed. A statistical division of the data sample into the fraction consistent with single photon and the fraction due to multiphoton decays of neutral hadrons is accomplished by measuring the average conversion probability for the sample in a one radiation length thick converter. The fraction of the sample attributable to direct single photon production is 〈 γ /all〉 = 0.074 ± 0.012 for 6 GeV/ c < p T 10 GeV/ c , and 〈 γ /all〉 = 0.26 ± 0.04 for p T > 10 GeV/ c , with an additional systematic uncertainty of ±0.05 for both values.
No description provided.
The π0 inclusive cross section for c.m. production angles θ=90° and 22°>~θ>~5° at c.m. energies of s=23 and 53 GeV has been measured. This cross section is strongly dependent on both θ and s at small angles. The hypothesis of radial scaling is shown to be incapable of incorporating both θ and s dependence of the cross section. A recent quantum-chromodynamics calculation is in qualitative agreement with our results.
No description provided.
No description provided.
No description provided.
The inclusive cross-section for π0 production near 90° inpp collisions at the CERN Intersecting Storage Rings has been studied for thepT range 3<pT<16GeV/c at four different centre-of-mass energies (\(\sqrt s = 30.6\), 44.8, 52.7, and 62.8 GeV). In this experiment the two photons from the π0→yy decay were resolved and measured separately forpT values up to 10 GeV/c. Results indicate an agreement with thepT−8 behaviour for the lower values ofpT and a slower decrease of the cross-section for the higher values ofpT. The high-pT data deviate from the scaling expressionpT−nF(xT), which holds for the lowerpT values (pT<8GeV/c).
USING RETRACTED GEOMETRY.
USING SUPER-RETRACTED GEOMETRY.
USING SUPER-RETRACTED GEOMETRY.
This Letter reports measurements of the ratios of $\pi$, K, and p production at large values of transverse momentum in $\pi^- −p$ collisions. The charge ratios, such as $\frac {\pi^−} {\pi^+}$, $\frac {K^−} {K^+}$, and $\frac {\overline{p}}{p}$ are seen to be quite different from those measured in p −p collisions. These ratios are sensitive tests of hard-scattering models, and are compared with theoretical predictions. The particle ratios have also been studied as a function of center-of-mass angle ($\theta^*$) at $\theta^*$ = 90°, 77°, and 60°.
No description provided.
No description provided.
No description provided.