The ρ0-meson spin alignment is studied in p¯p interactions at 22.4 and 12 GeV/c and in the reaction p¯p→2π++2π−+neutrals at 5.7 GeV/c. An essential ρ0-meson spin alignment is observed. The values of the ρ00T element of the ρ0-meson spin-density matrix in the transversity frame are 0.56 ± 0.07, 0.53 ± 0.05, and 0.54 ± 0.04 for the above-mentioned interactions, respectively. An increase of ρ00T with ρ0 transverse momentum is obtained.
No description provided.
No description provided.
No description provided.
The reactions p¯p→π+π− and K+K− have been studied at 390, 490, 590, 690, and 780 MeV/c. An enhancement of about 150 μb has been observed in the cross sections of both reactions at the same beam momentum of 490 MeV/c. If this structure is interpreted as a meson resonance, it has a mass of 1940 ± 20 MeV and a width of less than 40 MeV.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for p¯p and pp elastic scattering at s=53 GeV in the interval 0.5<|t|<4.0 (GeV/c)2 at the CERN intersecting storage rings using the split-field magnet detector. The shape of the differential cross section differs significantly between p¯p and pp scattering in the region 1.1<|t|<1.5 (GeV/c)2, with p¯p data showing a less pronounced dip structure than pp data.
No description provided.
No description provided.
Measurements of the spin observables ANN(90∘) and AN0(90∘) for the reaction pp→dπ+ between 500 and 800 MeV are presented and compared with previous measurements and with predictions from theories and a partial-wave analysis. These are the first available measurements of ANN above 590 MeV.
ANALYSING POWER IS POL.POL(NAME=AN0).
The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.
.
.
.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
We have studied the absorption cross section of antiprotons on Al, Cu, and Pb for T=131.6 and 193.6 MeV. These results are compared with predictions of an optical model fitted to antiproton elastic scattering data on these nuclei and are in agreement with these predictions. The cross sections have an exponential dependence on the mass number A with an exponent of approximately 0.61.
No description provided.
None
No description provided.
The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .
Experimental data from the OLYA detector
Experimental data from the CMD detector
We present a measurement of the production of muon pairs in 194 GeV/c π−-tungsten interactions. A sample of 155,000 events with mass higher than 4.07 GeV/c2 has been used to determine the differential cross-section as a function of the scaling variables\(\sqrt \tau\) andxF.
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.21-0.24. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.24-0.27. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.27-0.30. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).